File size: 6,237 Bytes
e6bfe5c
 
ae36be9
 
 
 
9de7f58
e6bfe5c
f436055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da41238
f436055
 
 
da41238
f436055
 
 
 
 
 
 
 
 
04ea426
f436055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb91b5
9de7f58
2c380a0
 
9de7f58
2c380a0
3c073ba
d262f53
 
 
 
 
 
9de7f58
 
 
 
 
2c380a0
0cb91b5
d262f53
6f7c1fb
e5e6aae
6f7c1fb
418cafa
 
f436055
9de7f58
 
 
 
 
 
 
 
 
 
eef3247
feb0faa
 
 
9de7f58
 
 
 
 
 
 
 
 
 
81805e8
e6bfe5c
81805e8
1b711d9
 
c480c1f
 
 
 
 
 
8bb7ed4
c480c1f
 
 
 
 
 
 
 
 
 
 
 
 
9de7f58
 
 
0cb91b5
9de7f58
 
1c9f94a
0cb91b5
 
 
f436055
 
9de7f58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import streamlit as st
import pandas as pd
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import PyPDF2
import docx
import io
import re

def chunk_text(text, chunk_size=128):
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0

    for word in words:
        if current_length + len(word) + 1 > chunk_size:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
        else:
            current_chunk.append(word)
            current_length += len(word) + 1

    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks

st.set_page_config(layout="wide")

# Function to read text from uploaded file
def read_file(file):
    if file.type == "text/plain":
        return file.getvalue().decode("utf-8")
    elif file.type == "application/pdf":
        pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
        return " ".join(page.extract_text() for page in pdf_reader.pages)
    elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        doc = docx.Document(io.BytesIO(file.getvalue()))
        return " ".join(paragraph.text for paragraph in doc.paragraphs)
    else:
        st.error("Unsupported file type")
        return None

st.title("Turkish NER Models Testing")

model_list = [
    'girayyagmur/bert-base-turkish-ner-cased',
    'asahi417/tner-xlm-roberta-base-ontonotes5'
]

st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)

#st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")

# Determine aggregation strategy
aggregation = "simple" if model_checkpoint in ["asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"

st.subheader("Select Text Input Method")
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))

if input_method == "Write or Paste New Text":
    input_text = st.text_area('Write or Paste Text Below', value="", height=128)
else:
    uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
    if uploaded_file is not None:
        input_text = read_file(uploaded_file)
        if input_text:
            st.text_area("Extracted Text", input_text, height=128)
    else:
        input_text = ""

@st.cache_resource
def setModel(model_checkpoint, aggregation):
    model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)

@st.cache_resource
def entity_comb(output):
    output_comb = []
    for ind, entity in enumerate(output):
        if ind == 0:
            output_comb.append(entity)
        elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
            output_comb[-1]["word"] += output[ind]["word"]
            output_comb[-1]["end"] = output[ind]["end"]
        else:
            output_comb.append(entity)
    return output_comb

def create_mask_dict(entities, additional_masks=None):
    mask_dict = {}
    entity_counters = {}
    
    for entity in entities:
        if entity['entity_group'] not in ['CARDINAL', 'EVENT', 'PERCENT', 'QUANTITY', 'DATE', 'TITLE', 'WORK_OF_ART']:
            if entity['word'] not in mask_dict:  # Corrected indentation
                if entity['entity_group'] not in entity_counters:
                    entity_counters[entity['entity_group']] = 1
                else:
                    entity_counters[entity['entity_group']] += 1
                mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}"
    
    if additional_masks:
        for word, replacement in additional_masks.items():
            mask_dict[word] = replacement

    return mask_dict


def replace_words_in_text(input_text, entities):
    replace_dict = create_mask_dict(entities)
    for word, replacement in replace_dict.items():
        input_text = input_text.replace(word, replacement)
    return input_text

# Function to mask email, phone, and address patterns
def mask_patterns(text):
    masks = {}
    
    # Email pattern
    email_pattern = r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"
    emails = re.findall(email_pattern, text)
    for email in emails:
        masks[email] = "<EMAIL>"
    
    #Phone pattern (Turkish)
    #phone_pattern = r"\+90\d{10}|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}\b"
    phone_pattern = r"\b(0?5\d{2}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}|\b5\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2})\b"

    phones = re.findall(phone_pattern, text)
    for phone in phones:
        masks[phone] = "<PHONE>"

    # Replace patterns in text
    for word, replacement in masks.items():
        text = text.replace(word, replacement)

    return text, masks

Run_Button = st.button("Run")

if Run_Button and input_text:
    ner_pipeline = setModel(model_checkpoint, aggregation)
    
    # Chunk the input text
    chunks = chunk_text(input_text)
    
    # Process each chunk
    all_outputs = []
    for i, chunk in enumerate(chunks):
        output = ner_pipeline(chunk)
        
        # Adjust start and end positions for entities in chunks after the first
        if i > 0:
            offset = len(' '.join(chunks[:i])) + 1
            for entity in output:
                entity['start'] += offset
                entity['end'] += offset
        
        all_outputs.extend(output)
    
    # Combine entities
    output_comb = entity_comb(all_outputs)
    
    # Mask emails, phone numbers, and addresses
    masked_text, additional_masks = mask_patterns(input_text)

    # Create masked text and masking dictionary
    masked_text = replace_words_in_text(masked_text, output_comb)
    mask_dict = create_mask_dict(output_comb, additional_masks)

    # Display the masked text and masking dictionary
    st.subheader("Masked Text Preview")
    st.text(masked_text)

    st.subheader("Masking Dictionary")
    st.json(mask_dict)