Spaces:
Runtime error
Runtime error
File size: 6,237 Bytes
e6bfe5c ae36be9 9de7f58 e6bfe5c f436055 da41238 f436055 da41238 f436055 04ea426 f436055 0cb91b5 9de7f58 2c380a0 9de7f58 2c380a0 3c073ba d262f53 9de7f58 2c380a0 0cb91b5 d262f53 6f7c1fb e5e6aae 6f7c1fb 418cafa f436055 9de7f58 eef3247 feb0faa 9de7f58 81805e8 e6bfe5c 81805e8 1b711d9 c480c1f 8bb7ed4 c480c1f 9de7f58 0cb91b5 9de7f58 1c9f94a 0cb91b5 f436055 9de7f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import streamlit as st
import pandas as pd
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import PyPDF2
import docx
import io
import re
def chunk_text(text, chunk_size=128):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > chunk_size:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
else:
current_chunk.append(word)
current_length += len(word) + 1
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
st.set_page_config(layout="wide")
# Function to read text from uploaded file
def read_file(file):
if file.type == "text/plain":
return file.getvalue().decode("utf-8")
elif file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
return " ".join(page.extract_text() for page in pdf_reader.pages)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
doc = docx.Document(io.BytesIO(file.getvalue()))
return " ".join(paragraph.text for paragraph in doc.paragraphs)
else:
st.error("Unsupported file type")
return None
st.title("Turkish NER Models Testing")
model_list = [
'girayyagmur/bert-base-turkish-ner-cased',
'asahi417/tner-xlm-roberta-base-ontonotes5'
]
st.sidebar.header("Select NER Model")
model_checkpoint = st.sidebar.radio("", model_list)
#st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")
# Determine aggregation strategy
aggregation = "simple" if model_checkpoint in ["asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"
st.subheader("Select Text Input Method")
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
if input_method == "Write or Paste New Text":
input_text = st.text_area('Write or Paste Text Below', value="", height=128)
else:
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
if uploaded_file is not None:
input_text = read_file(uploaded_file)
if input_text:
st.text_area("Extracted Text", input_text, height=128)
else:
input_text = ""
@st.cache_resource
def setModel(model_checkpoint, aggregation):
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
@st.cache_resource
def entity_comb(output):
output_comb = []
for ind, entity in enumerate(output):
if ind == 0:
output_comb.append(entity)
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
output_comb[-1]["word"] += output[ind]["word"]
output_comb[-1]["end"] = output[ind]["end"]
else:
output_comb.append(entity)
return output_comb
def create_mask_dict(entities, additional_masks=None):
mask_dict = {}
entity_counters = {}
for entity in entities:
if entity['entity_group'] not in ['CARDINAL', 'EVENT', 'PERCENT', 'QUANTITY', 'DATE', 'TITLE', 'WORK_OF_ART']:
if entity['word'] not in mask_dict: # Corrected indentation
if entity['entity_group'] not in entity_counters:
entity_counters[entity['entity_group']] = 1
else:
entity_counters[entity['entity_group']] += 1
mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}"
if additional_masks:
for word, replacement in additional_masks.items():
mask_dict[word] = replacement
return mask_dict
def replace_words_in_text(input_text, entities):
replace_dict = create_mask_dict(entities)
for word, replacement in replace_dict.items():
input_text = input_text.replace(word, replacement)
return input_text
# Function to mask email, phone, and address patterns
def mask_patterns(text):
masks = {}
# Email pattern
email_pattern = r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"
emails = re.findall(email_pattern, text)
for email in emails:
masks[email] = "<EMAIL>"
#Phone pattern (Turkish)
#phone_pattern = r"\+90\d{10}|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}\b"
phone_pattern = r"\b(0?5\d{2}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}|\b5\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2})\b"
phones = re.findall(phone_pattern, text)
for phone in phones:
masks[phone] = "<PHONE>"
# Replace patterns in text
for word, replacement in masks.items():
text = text.replace(word, replacement)
return text, masks
Run_Button = st.button("Run")
if Run_Button and input_text:
ner_pipeline = setModel(model_checkpoint, aggregation)
# Chunk the input text
chunks = chunk_text(input_text)
# Process each chunk
all_outputs = []
for i, chunk in enumerate(chunks):
output = ner_pipeline(chunk)
# Adjust start and end positions for entities in chunks after the first
if i > 0:
offset = len(' '.join(chunks[:i])) + 1
for entity in output:
entity['start'] += offset
entity['end'] += offset
all_outputs.extend(output)
# Combine entities
output_comb = entity_comb(all_outputs)
# Mask emails, phone numbers, and addresses
masked_text, additional_masks = mask_patterns(input_text)
# Create masked text and masking dictionary
masked_text = replace_words_in_text(masked_text, output_comb)
mask_dict = create_mask_dict(output_comb, additional_masks)
# Display the masked text and masking dictionary
st.subheader("Masked Text Preview")
st.text(masked_text)
st.subheader("Masking Dictionary")
st.json(mask_dict) |