File size: 8,943 Bytes
dd7488f
 
 
 
 
236ecdd
 
e4aa90a
236ecdd
 
 
 
 
 
 
 
6c3736e
 
 
 
 
 
 
 
 
 
 
 
f65e26a
 
 
6c3736e
 
 
 
 
f65e26a
 
 
 
6c3736e
f65e26a
6c3736e
f65e26a
 
 
 
 
 
6c3736e
 
 
 
 
f65e26a
 
 
6c3736e
236ecdd
 
 
 
 
 
 
 
e4aa90a
236ecdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4aa90a
236ecdd
 
e4aa90a
236ecdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd7488f
e4aa90a
8de7c36
 
 
 
 
 
 
 
 
 
 
dd7488f
 
 
 
 
 
8de7c36
 
dd7488f
 
 
 
 
8de7c36
 
 
 
 
 
dd7488f
 
 
 
8de7c36
 
 
dd7488f
 
 
 
 
 
 
 
 
 
 
8de7c36
dd7488f
8de7c36
 
 
dd7488f
 
8de7c36
 
dd7488f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de7c36
 
 
 
 
 
 
 
 
dd7488f
 
8de7c36
 
 
 
 
 
 
 
 
 
 
 
 
dd7488f
 
 
 
8de7c36
 
 
 
 
 
dd7488f
 
 
 
 
 
 
8de7c36
 
 
 
 
 
dd7488f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import math
from typing import List
from itertools import chain
import networkx as nx
import plotly.graph_objs as go
import numpy as np


def get_pipeline_graph(pipeline):
    # Controls for how the graph is drawn
    nodeColor = "#ffbf00"
    nodeSize = 40
    lineWidth = 2
    lineColor = "#ffffff"

    G = pipeline.graph
    current_coordinate = (0, len(set([edge[0] for edge in G.edges()])) + 1)
    # Transform G.edges into {node : all_connected_nodes} format
    node_connections = {}
    for in_node, out_node in G.edges():
        if in_node in node_connections:
            node_connections[in_node].append(out_node)
        else:
            node_connections[in_node] = [out_node]
    # Get node coordinates/pos
    fixed_pos_nodes = {}
    for idx, (in_node, out_nodes) in enumerate(node_connections.items()):
        if in_node not in fixed_pos_nodes:
            fixed_pos_nodes[in_node] = np.array(
                [current_coordinate[0], current_coordinate[1]]
            )
            current_coordinate = (current_coordinate[0], current_coordinate[1] - 1)
        # If more than 1 out node, then branch out in X coordinate
        if len(out_nodes) > 1:
            # if length is odd
            if (len(out_nodes) % 2) != 0:
                middle_node = out_nodes[round(len(out_nodes) / 2, 0) - 1]
                fixed_pos_nodes[middle_node] = np.array(
                    [current_coordinate[0], current_coordinate[1]]
                )
                out_nodes = [n for n in out_nodes if n != middle_node]
            correction_coordinate = -len(out_nodes) / 2
            for out_node in out_nodes:
                fixed_pos_nodes[out_node] = np.array(
                    [
                        int(current_coordinate[0] + correction_coordinate),
                        int(current_coordinate[1]),
                    ]
                )
                if correction_coordinate == -1:
                    correction_coordinate += 1
                correction_coordinate += 1
            current_coordinate = (current_coordinate[0], current_coordinate[1] - 1)
        elif len(node_connections) - 1 == idx:
            fixed_pos_nodes[out_nodes[0]] = np.array(
                [current_coordinate[0], current_coordinate[1]]
            )
    pos = nx.spring_layout(G, pos=fixed_pos_nodes, fixed=G.nodes(), seed=42)
    for node in G.nodes:
        G.nodes[node]["pos"] = list(pos[node])

    # Make list of nodes for plotly
    node_x = []
    node_y = []
    node_name = []
    for node in G.nodes():
        node_name.append(G.nodes[node]["component"].name)
        x, y = G.nodes[node]["pos"]
        node_x.append(x)
        node_y.append(y)

    # Make a list of edges for plotly, including line segments that result in arrowheads
    edge_x = []
    edge_y = []
    for edge in G.edges():
        start = G.nodes[edge[0]]["pos"]
        end = G.nodes[edge[1]]["pos"]
        # addEdge(start, end, edge_x, edge_y, lengthFrac=1, arrowPos = None, arrowLength=0.025, arrowAngle = 30, dotSize=20)
        edge_x, edge_y = addEdge(
            start,
            end,
            edge_x,
            edge_y,
            lengthFrac=0.5,
            arrowPos="end",
            arrowLength=0.04,
            arrowAngle=40,
            dotSize=nodeSize,
        )

    edge_trace = go.Scatter(
        x=edge_x,
        y=edge_y,
        line=dict(width=lineWidth, color=lineColor),
        hoverinfo="none",
        mode="lines",
    )

    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        mode="markers+text",
        textposition="middle right",
        hoverinfo="none",
        text=node_name,
        marker=dict(showscale=False, color=nodeColor, size=nodeSize),
        textfont=dict(size=18),
    )

    fig = go.Figure(
        data=[edge_trace, node_trace],
        layout=go.Layout(
            showlegend=False,
            hovermode="closest",
            margin=dict(b=20, l=5, r=5, t=40),
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        ),
    )

    fig.update_layout(
        yaxis=dict(scaleanchor="x", scaleratio=1), plot_bgcolor="rgb(14,17,23)"
    )

    return fig


def addEdge(
    start,
    end,
    edge_x,
    edge_y,
    lengthFrac=1,
    arrowPos=None,
    arrowLength=0.025,
    arrowAngle=30,
    dotSize=20,
):

    # Get start and end cartesian coordinates
    x0, y0 = start
    x1, y1 = end

    # Incorporate the fraction of this segment covered by a dot into total reduction
    length = math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)
    dotSizeConversion = 0.0565 / 20  # length units per dot size
    convertedDotDiameter = dotSize * dotSizeConversion
    lengthFracReduction = convertedDotDiameter / length
    lengthFrac = lengthFrac - lengthFracReduction

    # If the line segment should not cover the entire distance, get actual start and end coords
    skipX = (x1 - x0) * (1 - lengthFrac)
    skipY = (y1 - y0) * (1 - lengthFrac)
    x0 = x0 + skipX / 2
    x1 = x1 - skipX / 2
    y0 = y0 + skipY / 2
    y1 = y1 - skipY / 2

    # Append line corresponding to the edge
    edge_x.append(x0)
    edge_x.append(x1)
    edge_x.append(
        None
    )  # Prevents a line being drawn from end of this edge to start of next edge
    edge_y.append(y0)
    edge_y.append(y1)
    edge_y.append(None)

    # Draw arrow
    if not arrowPos == None:

        # Find the point of the arrow; assume is at end unless told middle
        pointx = x1
        pointy = y1

        eta = math.degrees(math.atan((x1 - x0) / (y1 - y0))) if y1 != y0 else 90.0

        if arrowPos == "middle" or arrowPos == "mid":
            pointx = x0 + (x1 - x0) / 2
            pointy = y0 + (y1 - y0) / 2

        # Find the directions the arrows are pointing
        signx = (x1 - x0) / abs(x1 - x0) if x1 != x0 else +1  # verify this once
        signy = (y1 - y0) / abs(y1 - y0) if y1 != y0 else +1  # verified

        # Append first arrowhead
        dx = arrowLength * math.sin(math.radians(eta + arrowAngle))
        dy = arrowLength * math.cos(math.radians(eta + arrowAngle))
        edge_x.append(pointx)
        edge_x.append(pointx - signx**2 * signy * dx)
        edge_x.append(None)
        edge_y.append(pointy)
        edge_y.append(pointy - signx**2 * signy * dy)
        edge_y.append(None)

        # And second arrowhead
        dx = arrowLength * math.sin(math.radians(eta - arrowAngle))
        dy = arrowLength * math.cos(math.radians(eta - arrowAngle))
        edge_x.append(pointx)
        edge_x.append(pointx - signx**2 * signy * dx)
        edge_x.append(None)
        edge_y.append(pointy)
        edge_y.append(pointy - signx**2 * signy * dy)
        edge_y.append(None)

    return edge_x, edge_y


def add_arrows(
    source_x: List[float],
    target_x: List[float],
    source_y: List[float],
    target_y: List[float],
    arrowLength=0.025,
    arrowAngle=30,
):
    pointx = list(map(lambda x: x[0] + (x[1] - x[0]) / 2, zip(source_x, target_x)))
    pointy = list(map(lambda x: x[0] + (x[1] - x[0]) / 2, zip(source_y, target_y)))
    etas = list(
        map(
            lambda x: math.degrees(math.atan((x[1] - x[0]) / (x[3] - x[2]))),
            zip(source_x, target_x, source_y, target_y),
        )
    )

    signx = list(
        map(lambda x: (x[1] - x[0]) / abs(x[1] - x[0]), zip(source_x, target_x))
    )
    signy = list(
        map(lambda x: (x[1] - x[0]) / abs(x[1] - x[0]), zip(source_y, target_y))
    )

    dx = list(map(lambda x: arrowLength * math.sin(math.radians(x + arrowAngle)), etas))
    dy = list(map(lambda x: arrowLength * math.cos(math.radians(x + arrowAngle)), etas))
    none_spacer = [None for _ in range(len(pointx))]
    arrow_line_x = list(
        map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointx, signx, signy, dx))
    )
    arrow_line_y = list(
        map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointy, signx, signy, dy))
    )

    arrow_line_1x_coords = list(chain(*zip(pointx, arrow_line_x, none_spacer)))
    arrow_line_1y_coords = list(chain(*zip(pointy, arrow_line_y, none_spacer)))

    dx = list(map(lambda x: arrowLength * math.sin(math.radians(x - arrowAngle)), etas))
    dy = list(map(lambda x: arrowLength * math.cos(math.radians(x - arrowAngle)), etas))
    none_spacer = [None for _ in range(len(pointx))]
    arrow_line_x = list(
        map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointx, signx, signy, dx))
    )
    arrow_line_y = list(
        map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointy, signx, signy, dy))
    )

    arrow_line_2x_coords = list(chain(*zip(pointx, arrow_line_x, none_spacer)))
    arrow_line_2y_coords = list(chain(*zip(pointy, arrow_line_y, none_spacer)))

    x_arrows = arrow_line_1x_coords + arrow_line_2x_coords
    y_arrows = arrow_line_1y_coords + arrow_line_2y_coords

    return x_arrows, y_arrows