File size: 2,427 Bytes
01b8e8e
 
 
39503cb
 
 
 
 
 
01b8e8e
 
 
57f7a2e
01b8e8e
 
 
 
57f7a2e
9d9f8c0
 
 
 
57f7a2e
213d365
fae3074
 
 
 
 
39503cb
 
01b8e8e
 
 
39503cb
01b8e8e
 
39503cb
6c3736e
39503cb
01b8e8e
39503cb
01b8e8e
6c3736e
01b8e8e
39503cb
01b8e8e
39503cb
01b8e8e
39503cb
 
01b8e8e
 
 
39503cb
6c3736e
39503cb
01b8e8e
 
 
 
 
 
 
 
 
 
 
39503cb
01b8e8e
39503cb
01b8e8e
 
 
 
 
6c3736e
01b8e8e
 
39503cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
from streamlit_option_menu import option_menu
from core.search_index import index, search
from interface.components import (
    component_show_pipeline,
    component_show_search_result,
    component_text_input,
)


def page_landing_page(container):
    with container:
        st.header("Neural Search V1.0")

        st.markdown(
            "This is a tool to allow indexing & search content using neural capabilities"
        )
        st.markdown(
            "In this first version you can:"
            "\n  - Index raw text as documents"
            "\n  - Use Dense Passage Retrieval pipeline"
            "\n  - Search the indexed documents"
        )
        st.markdown(
            "TODO list:"
            "\n  - Build other pipelines"
            "\n  - Include file/url indexing"
            "\n  - [Optional] Include text to audio to read responses"
        )


def page_search(container):
    with container:
        st.title("Query me!")

        ## SEARCH ##
        query = st.text_input("Query")

        component_show_pipeline(st.session_state["pipeline"]["search_pipeline"])

        if st.button("Search"):
            st.session_state["search_results"] = search(
                queries=[query],
                pipeline=st.session_state["pipeline"]["search_pipeline"],
            )
        if "search_results" in st.session_state:
            component_show_search_result(
                container=container, results=st.session_state["search_results"][0]
            )


def page_index(container):
    with container:
        st.title("Index time!")

        component_show_pipeline(st.session_state["pipeline"]["index_pipeline"])

        input_funcs = {
            "Raw Text": (component_text_input, "card-text"),
        }
        selected_input = option_menu(
            "Input Text",
            list(input_funcs.keys()),
            icons=[f[1] for f in input_funcs.values()],
            menu_icon="list",
            default_index=0,
            orientation="horizontal",
        )

        corpus = input_funcs[selected_input][0](container)

        if len(corpus) > 0:
            index_results = None
            if st.button("Index"):
                index_results = index(
                    corpus,
                    st.session_state["pipeline"]["index_pipeline"],
                )
            if index_results:
                st.write(index_results)