File size: 3,065 Bytes
01b8e8e
 
 
39503cb
4107940
39503cb
 
 
1b47089
39503cb
 
01b8e8e
 
 
f670f93
01b8e8e
 
 
 
0a35ae0
 
 
57f7a2e
f670f93
9ff8b5f
 
9d9f8c0
57f7a2e
213d365
fae3074
9ff8b5f
 
 
fae3074
 
9f4d760
 
 
 
39503cb
 
01b8e8e
 
 
39503cb
01b8e8e
 
39503cb
5634055
39503cb
01b8e8e
39503cb
01b8e8e
6c3736e
01b8e8e
39503cb
01b8e8e
39503cb
01b8e8e
39503cb
 
01b8e8e
 
 
39503cb
5634055
39503cb
01b8e8e
 
0a35ae0
 
01b8e8e
 
0a35ae0
01b8e8e
 
 
 
 
 
39503cb
01b8e8e
39503cb
01b8e8e
 
 
 
 
6c3736e
01b8e8e
 
39503cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import streamlit as st
from streamlit_option_menu import option_menu
from core.search_index import index, search
from interface.components import (
    component_file_input,
    component_show_pipeline,
    component_show_search_result,
    component_text_input,
    component_article_url,
)


def page_landing_page(container):
    with container:
        st.header("Neural Search V2.0")

        st.markdown(
            "This is a tool to allow indexing & search content using neural capabilities"
        )
        st.markdown(
            "It uses the [Haystack](https://haystack.deepset.ai/overview/intro) open-source framework for building search systems"
        )
        st.markdown(
            "In this second version you can:"
            "\n  - Index raw text, URLs, CSVs, PDFs and Images"
            "\n  - Use Dense Passage Retrieval, Keyword Search pipeline and DPR Ranker pipelines"
            "\n  - Search the indexed documents"
        )
        st.markdown(
            "TODO list:"
            "\n  - File type classification and converter nodes"
            "\n  - Audio to text support for indexing"
            "\n  - Include text to audio to read responses"
            "\n  - Build other pipelines"
        )
        st.markdown(
            "Follow development of the tool [here](https://github.com/ugm2/neural-search-demo)"
            "\n\nDeveloped with 💚 by [@ugm2](https://github.com/ugm2)"
        )


def page_search(container):
    with container:
        st.title("Query me!")

        ## SEARCH ##
        query = st.text_input("Query")

        component_show_pipeline(st.session_state["pipeline"], "search_pipeline")

        if st.button("Search"):
            st.session_state["search_results"] = search(
                queries=[query],
                pipeline=st.session_state["pipeline"]["search_pipeline"],
            )
        if "search_results" in st.session_state:
            component_show_search_result(
                container=container, results=st.session_state["search_results"][0]
            )


def page_index(container):
    with container:
        st.title("Index time!")

        component_show_pipeline(st.session_state["pipeline"], "index_pipeline")

        input_funcs = {
            "Raw Text": (component_text_input, "card-text"),
            "URL": (component_article_url, "link"),
            "File": (component_file_input, "file-text"),
        }
        selected_input = option_menu(
            None,
            list(input_funcs.keys()),
            icons=[f[1] for f in input_funcs.values()],
            menu_icon="list",
            default_index=0,
            orientation="horizontal",
        )

        corpus = input_funcs[selected_input][0](container)

        if len(corpus) > 0:
            index_results = None
            if st.button("Index"):
                index_results = index(
                    corpus,
                    st.session_state["pipeline"]["index_pipeline"],
                )
            if index_results:
                st.write(index_results)