File size: 25,784 Bytes
7cd9ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import math
import os
import re
from typing import Any, List, Optional, Union

import numpy as np
import PIL
import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import ImageOps
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.swin_transformer import SwinTransformer
from torchvision import transforms
from torchvision.transforms.functional import resize, rotate
from transformers import MBartConfig, MBartForCausalLM, XLMRobertaTokenizer
from transformers.file_utils import ModelOutput
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel


class SwinEncoder(nn.Module):
    r"""
    Donut encoder based on SwinTransformer
    Set the initial weights and configuration with a pretrained SwinTransformer and then
    modify the detailed configurations as a Donut Encoder

    Args:
        input_size: Input image size (width, height)
        align_long_axis: Whether to rotate image if height is greater than width
        window_size: Window size(=patch size) of SwinTransformer
        encoder_layer: Number of layers of SwinTransformer encoder
        name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local.
                      otherwise, `swin_base_patch4_window12_384` will be set (using `timm`).
    """

    def __init__(
        self,
        input_size: List[int],
        align_long_axis: bool,
        window_size: int,
        encoder_layer: List[int],
        name_or_path: Union[str, bytes, os.PathLike] = None,
    ):
        super().__init__()
        self.input_size = input_size
        self.align_long_axis = align_long_axis
        self.window_size = window_size
        self.encoder_layer = encoder_layer

        self.to_tensor = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
            ]
        )

        self.model = SwinTransformer(
            img_size=self.input_size,
            depths=self.encoder_layer,
            window_size=self.window_size,
            patch_size=4,
            embed_dim=128,
            num_heads=[4, 8, 16, 32],
            num_classes=0,
        )
        self.model.norm = None

        # weight init with swin
        if not name_or_path:
            swin_state_dict = timm.create_model("swin_base_patch4_window12_384", pretrained=True).state_dict()
            new_swin_state_dict = self.model.state_dict()
            for x in new_swin_state_dict:
                if x.endswith("relative_position_index") or x.endswith("attn_mask"):
                    pass
                elif (
                    x.endswith("relative_position_bias_table")
                    and self.model.layers[0].blocks[0].attn.window_size[0] != 12
                ):
                    pos_bias = swin_state_dict[x].unsqueeze(0)[0]
                    old_len = int(math.sqrt(len(pos_bias)))
                    new_len = int(2 * window_size - 1)
                    pos_bias = pos_bias.reshape(1, old_len, old_len, -1).permute(0, 3, 1, 2)
                    pos_bias = F.interpolate(pos_bias, size=(new_len, new_len), mode="bicubic", align_corners=False)
                    new_swin_state_dict[x] = pos_bias.permute(0, 2, 3, 1).reshape(1, new_len ** 2, -1).squeeze(0)
                else:
                    new_swin_state_dict[x] = swin_state_dict[x]
            self.model.load_state_dict(new_swin_state_dict)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Args:
            x: (batch_size, num_channels, height, width)
        """
        x = self.model.patch_embed(x)
        x = self.model.pos_drop(x)
        x = self.model.layers(x)
        return x

    def prepare_input(self, img: PIL.Image.Image, random_padding: bool = False) -> torch.Tensor:
        """
        Convert PIL Image to tensor according to specified input_size after following steps below:
            - resize
            - rotate (if align_long_axis is True and image is not aligned longer axis with canvas)
            - pad
        """
        img = img.convert("RGB")
        if self.align_long_axis and (
            (self.input_size[0] > self.input_size[1] and img.width > img.height)
            or (self.input_size[0] < self.input_size[1] and img.width < img.height)
        ):
            img = rotate(img, angle=-90, expand=True)
        img = resize(img, min(self.input_size))
        img.thumbnail((self.input_size[1], self.input_size[0]))
        delta_width = self.input_size[1] - img.width
        delta_height = self.input_size[0] - img.height
        if random_padding:
            pad_width = np.random.randint(low=0, high=delta_width + 1)
            pad_height = np.random.randint(low=0, high=delta_height + 1)
        else:
            pad_width = delta_width // 2
            pad_height = delta_height // 2
        padding = (
            pad_width,
            pad_height,
            delta_width - pad_width,
            delta_height - pad_height,
        )
        return self.to_tensor(ImageOps.expand(img, padding))


class BARTDecoder(nn.Module):
    """
    Donut Decoder based on Multilingual BART
    Set the initial weights and configuration with a pretrained multilingual BART model,
    and modify the detailed configurations as a Donut decoder

    Args:
        decoder_layer:
            Number of layers of BARTDecoder
        max_position_embeddings:
            The maximum sequence length to be trained
        name_or_path:
            Name of a pretrained model name either registered in huggingface.co. or saved in local,
            otherwise, `hyunwoongko/asian-bart-ecjk` will be set (using `transformers`)
    """

    def __init__(
        self, decoder_layer: int, max_position_embeddings: int, name_or_path: Union[str, bytes, os.PathLike] = None
    ):
        super().__init__()
        self.decoder_layer = decoder_layer
        self.max_position_embeddings = max_position_embeddings

        self.tokenizer = XLMRobertaTokenizer.from_pretrained(
            "hyunwoongko/asian-bart-ecjk" if not name_or_path else name_or_path
        )

        self.model = MBartForCausalLM(
            config=MBartConfig(
                is_decoder=True,
                is_encoder_decoder=False,
                add_cross_attention=True,
                decoder_layers=self.decoder_layer,
                max_position_embeddings=self.max_position_embeddings,
                vocab_size=len(self.tokenizer),
                scale_embedding=True,
                add_final_layer_norm=True,
            )
        )
        self.model.forward = self.forward  #  to get cross attentions and utilize `generate` function

        self.model.config.is_encoder_decoder = True  # to get cross-attention
        self.add_special_tokens(["<sep/>"])  # <sep/> is used for representing a list in a JSON
        self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id
        self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference

        # weight init with asian-bart
        if not name_or_path:
            bart_state_dict = MBartForCausalLM.from_pretrained("hyunwoongko/asian-bart-ecjk").state_dict()
            new_bart_state_dict = self.model.state_dict()
            for x in new_bart_state_dict:
                if x.endswith("embed_positions.weight") and self.max_position_embeddings != 1024:
                    new_bart_state_dict[x] = torch.nn.Parameter(
                        self.resize_bart_abs_pos_emb(
                            bart_state_dict[x],
                            self.max_position_embeddings
                            + 2,  # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119
                        )
                    )
                elif x.endswith("embed_tokens.weight") or x.endswith("lm_head.weight"):
                    new_bart_state_dict[x] = bart_state_dict[x][: len(self.tokenizer), :]
                else:
                    new_bart_state_dict[x] = bart_state_dict[x]
            self.model.load_state_dict(new_bart_state_dict)

    def add_special_tokens(self, list_of_tokens: List[str]):
        """
        Add special tokens to tokenizer and resize the token embeddings
        """
        newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))})
        if newly_added_num > 0:
            self.model.resize_token_embeddings(len(self.tokenizer))

    def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool = None, attention_mask: torch.Tensor = None):
        """
        Args:
            input_ids: (batch_size, sequence_lenth)
        Returns:
            input_ids: (batch_size, sequence_length)
            attention_mask: (batch_size, sequence_length)
            encoder_hidden_states: (batch_size, sequence_length, embedding_dim)
        """
        # for compatibility with transformers==4.11.x
        if past is not None:
            past_key_values = past
        attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]
        output = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
            "encoder_hidden_states": encoder_outputs.last_hidden_state,
        }
        return output

    def forward(
        self,
        input_ids,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        past_key_values: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: bool = None,
        output_attentions: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[torch.Tensor] = None,
        return_dict: bool = None,
    ):
        """
        A forward fucntion to get cross attentions and utilize `generate` function

        Source:
        https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L1669-L1810

        Args:
            input_ids: (batch_size, sequence_length)
            attention_mask: (batch_size, sequence_length)
            encoder_hidden_states: (batch_size, sequence_length, hidden_size)

        Returns:
            loss: (1, )
            logits: (batch_size, sequence_length, hidden_dim)
            hidden_states: (batch_size, sequence_length, hidden_size)
            decoder_attentions: (batch_size, num_heads, sequence_length, sequence_length)
            cross_attentions: (batch_size, num_heads, sequence_length, sequence_length)
        """
        output_attentions = output_attentions if output_attentions is not None else self.model.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.model.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.model.config.use_return_dict
        outputs = self.model.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.model.lm_head(outputs[0])

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(logits.view(-1, self.model.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return ModelOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            decoder_attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    @staticmethod
    def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor:
        """
        Resize position embeddings
        Truncate if sequence length of Bart backbone is greater than given max_length,
        else interpolate to max_length
        """
        if weight.shape[0] > max_length:
            weight = weight[:max_length, ...]
        else:
            weight = (
                F.interpolate(
                    weight.permute(1, 0).unsqueeze(0),
                    size=max_length,
                    mode="linear",
                    align_corners=False,
                )
                .squeeze(0)
                .permute(1, 0)
            )
        return weight


class DonutConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`DonutModel`]. It is used to
    instantiate a Donut model according to the specified arguments, defining the model architecture

    Args:
        input_size:
            Input image size (canvas size) of Donut.encoder, SwinTransformer in this codebase
        align_long_axis:
            Whether to rotate image if height is greater than width
        window_size:
            Window size of Donut.encoder, SwinTransformer in this codebase
        encoder_layer:
            Depth of each Donut.encoder Encoder layer, SwinTransformer in this codebase
        decoder_layer:
            Number of hidden layers in the Donut.decoder, such as BART
        max_position_embeddings
            Trained max position embeddings in the Donut decoder,
            if not specified, it will have same value with max_length
        max_length:
            Max position embeddings(=maximum sequence length) you want to train
        name_or_path:
            Name of a pretrained model name either registered in huggingface.co. or saved in local
    """

    model_type = "donut"

    def __init__(
        self,
        input_size: List[int] = [2560, 1920],
        align_long_axis: bool = False,
        window_size: int = 10,
        encoder_layer: List[int] = [2, 2, 14, 2],
        decoder_layer: int = 4,
        max_position_embeddings: int = None,
        max_length: int = 1536,
        name_or_path: Union[str, bytes, os.PathLike] = "",
        **kwargs,
    ):
        super().__init__()
        self.input_size = input_size
        self.align_long_axis = align_long_axis
        self.window_size = window_size
        self.encoder_layer = encoder_layer
        self.decoder_layer = decoder_layer
        self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings
        self.max_length = max_length
        self.name_or_path = name_or_path


class DonutModel(PreTrainedModel):
    r"""
    Donut: an E2E OCR-free Document Understanding Transformer.
    The encoder maps an input document image into a set of embeddings,
    the decoder predicts a desired token sequence, that can be converted to a structured format,
    given a prompt and the encoder output embeddings
    """
    config_class = DonutConfig
    base_model_prefix = "donut"

    def __init__(self, config: DonutConfig):
        super().__init__(config)
        self.config = config
        self.encoder = SwinEncoder(
            input_size=self.config.input_size,
            align_long_axis=self.config.align_long_axis,
            window_size=self.config.window_size,
            encoder_layer=self.config.encoder_layer,
            name_or_path=self.config.name_or_path,
        )
        self.decoder = BARTDecoder(
            max_position_embeddings=self.config.max_position_embeddings,
            decoder_layer=self.config.decoder_layer,
            name_or_path=self.config.name_or_path,
        )

    def forward(self, image_tensors: torch.Tensor, decoder_input_ids: torch.Tensor, decoder_labels: torch.Tensor):
        """
        Calculate a loss given an input image and a desired token sequence,
        the model will be trained in a teacher-forcing manner

        Args:
            image_tensors: (batch_size, num_channels, height, width)
            decoder_input_ids: (batch_size, sequence_length, embedding_dim)
            decode_labels: (batch_size, sequence_length)
        """
        encoder_outputs = self.encoder(image_tensors)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            encoder_hidden_states=encoder_outputs,
            labels=decoder_labels,
        )
        return decoder_outputs

    def inference(
        self,
        image: PIL.Image = None,
        prompt: str = None,
        image_tensors: Optional[torch.Tensor] = None,
        prompt_tensors: Optional[torch.Tensor] = None,
        return_json: bool = True,
        return_attentions: bool = False,
    ):
        """
        Generate a token sequence in an auto-regressive manner,
        the generated token sequence is convereted into an ordered JSON format

        Args:
            image: input document image (PIL.Image)
            prompt: task prompt (string) to guide Donut Decoder generation
            image_tensors: (1, num_channels, height, width)
                convert prompt to tensor if image_tensor is not fed
            prompt_tensors: (1, sequence_length)
                convert image to tensor if prompt_tensor is not fed
        """
        # prepare backbone inputs (image and prompt)
        if image is None and image_tensors is None:
            raise ValueError("Expected either image or image_tensors")
        if all(v is None for v in {prompt, prompt_tensors}):
            raise ValueError("Expected either prompt or prompt_tensors")

        if image_tensors is None:
            image_tensors = self.encoder.prepare_input(image).unsqueeze(0)

        if self.device.type == "cuda":  # half is not compatible in cpu implementation.
            image_tensors = image_tensors.half()
            image_tensors = image_tensors.to(self.device)

        if prompt_tensors is None:
            prompt_tensors = self.decoder.tokenizer(prompt, add_special_tokens=False, return_tensors="pt")["input_ids"]

        prompt_tensors = prompt_tensors.to(self.device)

        last_hidden_state = self.encoder(image_tensors)
        if self.device.type != "cuda":
            last_hidden_state = last_hidden_state.to(torch.float32)

        encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None)

        if len(encoder_outputs.last_hidden_state.size()) == 1:
            encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0)
        if len(prompt_tensors.size()) == 1:
            prompt_tensors = prompt_tensors.unsqueeze(0)

        # get decoder output
        decoder_output = self.decoder.model.generate(
            decoder_input_ids=prompt_tensors,
            encoder_outputs=encoder_outputs,
            max_length=self.config.max_length,
            early_stopping=True,
            pad_token_id=self.decoder.tokenizer.pad_token_id,
            eos_token_id=self.decoder.tokenizer.eos_token_id,
            use_cache=True,
            num_beams=1,
            bad_words_ids=[[self.decoder.tokenizer.unk_token_id]],
            return_dict_in_generate=True,
            output_attentions=return_attentions,
        )

        output = {"predictions": list()}
        for seq in self.decoder.tokenizer.batch_decode(decoder_output.sequences):
            seq = seq.replace(self.decoder.tokenizer.eos_token, "").replace(self.decoder.tokenizer.pad_token, "")
            seq = re.sub(r"<.*?>", "", seq, count=1).strip()  # remove first task start token
            if return_json:
                output["predictions"].append(self.token2json(seq))
            else:
                output["predictions"].append(seq)

        if return_attentions:
            output["attentions"] = {
                "self_attentions": decoder_output.decoder_attentions,
                "cross_attentions": decoder_output.cross_attentions,
            }

        return output

    def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
        """
        Convert an ordered JSON object into a token sequence
        """
        if type(obj) == dict:
            if len(obj) == 1 and "text_sequence" in obj:
                return obj["text_sequence"]
            else:
                output = ""
                if sort_json_key:
                    keys = sorted(obj.keys(), reverse=True)
                else:
                    keys = obj.keys()
                for k in keys:
                    if update_special_tokens_for_json_key:
                        self.decoder.add_special_tokens([fr"<s_{k}>", fr"</s_{k}>"])
                    output += (
                        fr"<s_{k}>"
                        + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
                        + fr"</s_{k}>"
                    )
                return output
        elif type(obj) == list:
            return r"<sep/>".join(
                [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
            )
        else:
            obj = str(obj)
            if f"<{obj}/>" in self.decoder.tokenizer.all_special_tokens:
                obj = f"<{obj}/>"  # for categorical special tokens
            return obj

    def token2json(self, tokens, is_inner_value=False):
        """
        Convert a (generated) token seuqnce into an ordered JSON format
        """
        output = dict()

        while tokens:
            start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
            if start_token is None:
                break
            key = start_token.group(1)
            end_token = re.search(fr"</s_{key}>", tokens, re.IGNORECASE)
            start_token = start_token.group()
            if end_token is None:
                tokens = tokens.replace(start_token, "")
            else:
                end_token = end_token.group()
                start_token_escaped = re.escape(start_token)
                end_token_escaped = re.escape(end_token)
                content = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE)
                if content is not None:
                    content = content.group(1).strip()
                    if r"<s_" in content and r"</s_" in content:  # non-leaf node
                        value = self.token2json(content, is_inner_value=True)
                        if value:
                            if len(value) == 1:
                                value = value[0]
                            output[key] = value
                    else:  # leaf nodes
                        output[key] = []
                        for leaf in content.split(r"<sep/>"):
                            leaf = leaf.strip()
                            if (
                                leaf in self.decoder.tokenizer.get_added_vocab()
                                and leaf[0] == "<"
                                and leaf[-2:] == "/>"
                            ):
                                leaf = leaf[1:-2]  # for categorical special tokens
                            output[key].append(leaf)
                        if len(output[key]) == 1:
                            output[key] = output[key][0]

                tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()
                if tokens[:6] == r"<sep/>":  # non-leaf nodes
                    return [output] + self.token2json(tokens[6:], is_inner_value=True)

        if len(output):
            return [output] if is_inner_value else output
        else:
            return [] if is_inner_value else {"text_sequence": tokens}

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, bytes, os.PathLike],
        *model_args,
        **kwargs,
    ):
        r"""
        Instantiate a pretrained donut model from a pre-trained model configuration

        Args:
            pretrained_model_name_or_path:
                Name of a pretrained model name either registered in huggingface.co. or saved in local,
                e.g., `naver-clova-ix/donut-base`, or `naver-clova-ix/donut-base-finetuned-rvlcdip`
        """
        model = super(DonutModel, cls).from_pretrained(pretrained_model_name_or_path, revision="official", *model_args, **kwargs)

        # truncate or interplolate position embeddings of donut decoder
        max_length = kwargs.get("max_length", model.config.max_position_embeddings)
        if (
            max_length != model.config.max_position_embeddings
        ):  # if max_length of trained model differs max_length you want to train
            model.decoder.model.model.decoder.embed_positions.weight = torch.nn.Parameter(
                model.decoder.resize_bart_abs_pos_emb(
                    model.decoder.model.model.decoder.embed_positions.weight,
                    max_length
                    + 2,  # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119
                )
            )
            model.config.max_position_embeddings = max_length

        return model