Spaces:
Running
Running
File size: 7,772 Bytes
7cd9ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import math
import random
import re
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from nltk import edit_distance
from pytorch_lightning.utilities import rank_zero_only
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torch.nn.utils.rnn import pad_sequence
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from donut import DonutConfig, DonutModel
class DonutModelPLModule(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
if self.config.get("pretrained_model_name_or_path", False):
self.model = DonutModel.from_pretrained(
self.config.pretrained_model_name_or_path,
input_size=self.config.input_size,
max_length=self.config.max_length,
align_long_axis=self.config.align_long_axis,
ignore_mismatched_sizes=True,
)
else:
self.model = DonutModel(
config=DonutConfig(
input_size=self.config.input_size,
max_length=self.config.max_length,
align_long_axis=self.config.align_long_axis,
# with DonutConfig, the architecture customization is available, e.g.,
# encoder_layer=[2,2,14,2], decoder_layer=4, ...
)
)
self.pytorch_lightning_version_is_1 = int(pl.__version__[0]) < 2
self.num_of_loaders = len(self.config.dataset_name_or_paths)
def training_step(self, batch, batch_idx):
image_tensors, decoder_input_ids, decoder_labels = list(), list(), list()
for batch_data in batch:
image_tensors.append(batch_data[0])
decoder_input_ids.append(batch_data[1][:, :-1])
decoder_labels.append(batch_data[2][:, 1:])
image_tensors = torch.cat(image_tensors)
decoder_input_ids = torch.cat(decoder_input_ids)
decoder_labels = torch.cat(decoder_labels)
loss = self.model(image_tensors, decoder_input_ids, decoder_labels)[0]
self.log_dict({"train_loss": loss}, sync_dist=True)
if not self.pytorch_lightning_version_is_1:
self.log('loss', loss, prog_bar=True)
return loss
def on_validation_epoch_start(self) -> None:
super().on_validation_epoch_start()
self.validation_step_outputs = [[] for _ in range(self.num_of_loaders)]
return
def validation_step(self, batch, batch_idx, dataloader_idx=0):
image_tensors, decoder_input_ids, prompt_end_idxs, answers = batch
decoder_prompts = pad_sequence(
[input_id[: end_idx + 1] for input_id, end_idx in zip(decoder_input_ids, prompt_end_idxs)],
batch_first=True,
)
preds = self.model.inference(
image_tensors=image_tensors,
prompt_tensors=decoder_prompts,
return_json=False,
return_attentions=False,
)["predictions"]
scores = list()
for pred, answer in zip(preds, answers):
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
answer = re.sub(r"<.*?>", "", answer, count=1)
answer = answer.replace(self.model.decoder.tokenizer.eos_token, "")
scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))
if self.config.get("verbose", False) and len(scores) == 1:
self.print(f"Prediction: {pred}")
self.print(f" Answer: {answer}")
self.print(f" Normed ED: {scores[0]}")
self.validation_step_outputs[dataloader_idx].append(scores)
return scores
def on_validation_epoch_end(self):
assert len(self.validation_step_outputs) == self.num_of_loaders
cnt = [0] * self.num_of_loaders
total_metric = [0] * self.num_of_loaders
val_metric = [0] * self.num_of_loaders
for i, results in enumerate(self.validation_step_outputs):
for scores in results:
cnt[i] += len(scores)
total_metric[i] += np.sum(scores)
val_metric[i] = total_metric[i] / cnt[i]
val_metric_name = f"val_metric_{i}th_dataset"
self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True)
self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True)
def configure_optimizers(self):
max_iter = None
if int(self.config.get("max_epochs", -1)) > 0:
assert len(self.config.train_batch_sizes) == 1, "Set max_epochs only if the number of datasets is 1"
max_iter = (self.config.max_epochs * self.config.num_training_samples_per_epoch) / (
self.config.train_batch_sizes[0] * torch.cuda.device_count() * self.config.get("num_nodes", 1)
)
if int(self.config.get("max_steps", -1)) > 0:
max_iter = min(self.config.max_steps, max_iter) if max_iter is not None else self.config.max_steps
assert max_iter is not None
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.lr)
scheduler = {
"scheduler": self.cosine_scheduler(optimizer, max_iter, self.config.warmup_steps),
"name": "learning_rate",
"interval": "step",
}
return [optimizer], [scheduler]
@staticmethod
def cosine_scheduler(optimizer, training_steps, warmup_steps):
def lr_lambda(current_step):
if current_step < warmup_steps:
return current_step / max(1, warmup_steps)
progress = current_step - warmup_steps
progress /= max(1, training_steps - warmup_steps)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * progress)))
return LambdaLR(optimizer, lr_lambda)
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
save_path = Path(self.config.result_path) / self.config.exp_name / self.config.exp_version
self.model.save_pretrained(save_path)
self.model.decoder.tokenizer.save_pretrained(save_path)
class DonutDataPLModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
self.train_batch_sizes = self.config.train_batch_sizes
self.val_batch_sizes = self.config.val_batch_sizes
self.train_datasets = []
self.val_datasets = []
self.g = torch.Generator()
self.g.manual_seed(self.config.seed)
def train_dataloader(self):
loaders = list()
for train_dataset, batch_size in zip(self.train_datasets, self.train_batch_sizes):
loaders.append(
DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=self.config.num_workers,
pin_memory=True,
worker_init_fn=self.seed_worker,
generator=self.g,
shuffle=True,
)
)
return loaders
def val_dataloader(self):
loaders = list()
for val_dataset, batch_size in zip(self.val_datasets, self.val_batch_sizes):
loaders.append(
DataLoader(
val_dataset,
batch_size=batch_size,
pin_memory=True,
shuffle=False,
)
)
return loaders
@staticmethod
def seed_worker(wordker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
|