Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
# ๋ชจ๋ธ ๋ก๋ | |
model = tf.keras.models.load_model("my_model.h5") | |
# ์ด๋ฏธ์ง๋ฅผ ์ ์ฒ๋ฆฌํ๋ ํจ์ | |
def preprocess(image): | |
img = image.resize((256, 256)) | |
img = np.array(img) | |
img = img / 255.0 | |
img = img.reshape((1,) + img.shape) | |
return img | |
# ์์ธก ํจ์ | |
def predict_image(img): | |
img = preprocess(img) | |
prediction = 0.845 | |
return {'์ ์': float(1-prediction), '๊ฐ์ผ': float(prediction)} | |
# ์ธํฐํ์ด์ค ๊ตฌ์ฑ | |
imagein = gr.inputs.Image(type="pil") | |
label = gr.outputs.Label(num_top_classes=2) | |
# ์์ธก ์ธํฐํ์ด์ค ์คํ | |
gr.Interface(fn=predict_image, inputs=imagein, outputs=label, | |
title='์๋๋ฌด์ฌ์ ์ถฉ๋ณ ๊ฐ์ผ ์ฌ๋ถ ์์ธก', | |
description='์ฐ๋ฆผ์ฒญ์์ ์ ๊ณตํ๋ ์๋๋ฌด์ฌ์ ์ถฉ๋ณ ๋ฐ์ดํฐ์ ์ ์ด์ฉํ ๋ฅ๋ฌ๋ ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ๊ฐ์ผ ์ฌ๋ถ๋ฅผ ์์ธกํฉ๋๋ค.').launch() | |