Spaces:
Sleeping
Sleeping
import torch | |
import GPUtil | |
import math | |
import random | |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, \ | |
FluxPipeline, StableDiffusion3Pipeline | |
MAX_SEED = 2**32 - 1 | |
TEXT_TO_IMAGE_DICTIONARY = { | |
# "FLUX.1 [schnell-dev-merged]": { | |
# "path": "sayakpaul/FLUX.1-merged", | |
# "pipeline": FluxPipeline, | |
# "device_map": "balanced" | |
# }, | |
# "FLUX.1 [schnell]": { | |
# "path": "black-forest-labs/FLUX.1-schnell", | |
# "pipeline": FluxPipeline, | |
# "device_map": "balanced" | |
# }, | |
# "FLUX.1 [dev]": { | |
# "path": "black-forest-labs/FLUX.1-dev", | |
# "pipeline": FluxPipeline, | |
# "device_map": "balanced" | |
# }, | |
# "Stable Diffusion 2.1": { | |
# "path": "stabilityai/stable-diffusion-2-1", | |
# "pipeline": StableDiffusionPipeline | |
# }, | |
"Stable Diffusion 3.5 Medium": { | |
"backend": "comfyui", | |
"path": "stuffs/comfyui_workflow_api/sd3_5_workflow_api.json", | |
"device_map": "balanced" | |
}, | |
"Stable Diffusion 3.5 Large": { | |
"backend": "comfyui", | |
"path": "stuffs/comfyui_workflow_api/sd3_5_workflow_api.json", | |
"device_map": "balanced" | |
}, | |
# "Stable Diffusion 3 Medium": { | |
# "path": "stabilityai/stable-diffusion-3-medium-diffusers", | |
# "pipeline": StableDiffusion3Pipeline, | |
# "device_map": "balanced" | |
# }, | |
# "Realistic SDXL": { | |
# "path": "misri/epicrealismXL_v7FinalDestination", | |
# "pipeline": StableDiffusionXLPipeline, | |
# }, | |
# "DreamShaper8 (SD 1.5)": { | |
# "path": "Lykon/dreamshaper-8", | |
# "pipeline": StableDiffusionPipeline, | |
# }, | |
# "Anime (SD 1.5)": { | |
# "path": "../checkpoints/darkSushiMixMix_225D.safetensors", | |
# "pipeline": StableDiffusionPipeline, | |
# } | |
} | |
def nearest_divisible_by_8(number: int = 1024): | |
""" | |
Auto adjust the number to make it divisible by 8 | |
""" | |
lower_multiple = (number // 8) * 8 | |
upper_multiple = lower_multiple + 8 | |
if (number - lower_multiple) < (upper_multiple - number): | |
return int(lower_multiple) | |
else: | |
return int(upper_multiple) | |
def get_gpu_info(width: int = 1024, | |
height: int = 1024, | |
num_images: int = 1) -> tuple[list, dict]: | |
""" | |
Get available GPUs info | |
Parameters: | |
- width : generated image's width | |
- height : generated image's height | |
- num_images : number of generated images per prompt | |
Returns: | |
- gpu_info and current_max_memory | |
""" | |
gpus = GPUtil.getGPUs() | |
gpu_info = [] | |
current_max_memory = {} | |
using_fast_flux = width <= 1280 \ | |
and height <= 1280 \ | |
and num_images==1 | |
for gpu in gpus: | |
info = { | |
'id': gpu.id, | |
'name': gpu.name, | |
'driver_version': gpu.driver, | |
'total_memory': gpu.memoryTotal, # In MB | |
'available_memory': gpu.memoryFree, # In MB | |
'used_memory': gpu.memoryUsed, # In MB | |
'temperature': gpu.temperature # In Celsius | |
} | |
gpu_info.append(info) | |
if using_fast_flux: | |
current_max_memory[gpu.id] = f"{math.ceil(gpu.memoryFree / 1024)}GB" | |
else: | |
current_max_memory[gpu.id] = f"{int(gpu.memoryFree / 1024)}GB" | |
return gpu_info, current_max_memory | |
def generate_number(): | |
""" | |
Random an integer | |
Returns: | |
- int: an integer | |
""" | |
return random.randint(0, MAX_SEED) | |
def assign_gpu(required_vram, width, height, num_images): | |
""" | |
Assign GPU device | |
Parameters: | |
- required_memory (int): minimum VRAM | |
Returns: | |
- torch.device | |
""" | |
gpu_info, _ = get_gpu_info(width, height, num_images) | |
device = "cpu" | |
for gpu in gpu_info: | |
if gpu['available_memory'] >= required_vram: | |
device = f"cuda:{gpu['id']}" | |
if device == "cpu": | |
return device | |
return torch.device(device) | |
# def optimize_flux_pipeline(width, height, num_images): | |
# """ | |
# Parameters: | |
# - width (int): generated image width | |
# - height (int): generated image height | |
# - num_images (int): number of generated images per prompt | |
# """ | |
# using_fast_flux = width <= 1280 \ | |
# and height <= 1280 \ | |
# and num_images==1 | |
# return using_fast_flux |