TonAI-Creative / utils.py
tungedng2710's picture
Initial commit
8eca2ce
raw
history blame
4.41 kB
import torch
import GPUtil
import math
import random
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, \
FluxPipeline, StableDiffusion3Pipeline
MAX_SEED = 2**32 - 1
TEXT_TO_IMAGE_DICTIONARY = {
# "FLUX.1 [schnell-dev-merged]": {
# "path": "sayakpaul/FLUX.1-merged",
# "pipeline": FluxPipeline,
# "device_map": "balanced"
# },
# "FLUX.1 [schnell]": {
# "path": "black-forest-labs/FLUX.1-schnell",
# "pipeline": FluxPipeline,
# "device_map": "balanced"
# },
# "FLUX.1 [dev]": {
# "path": "black-forest-labs/FLUX.1-dev",
# "pipeline": FluxPipeline,
# "device_map": "balanced"
# },
# "Stable Diffusion 2.1": {
# "path": "stabilityai/stable-diffusion-2-1",
# "pipeline": StableDiffusionPipeline
# },
"Stable Diffusion 3.5 Medium": {
"backend": "comfyui",
"path": "stuffs/comfyui_workflow_api/sd3_5_workflow_api.json",
"device_map": "balanced"
},
"Stable Diffusion 3.5 Large": {
"backend": "comfyui",
"path": "stuffs/comfyui_workflow_api/sd3_5_workflow_api.json",
"device_map": "balanced"
},
# "Stable Diffusion 3 Medium": {
# "path": "stabilityai/stable-diffusion-3-medium-diffusers",
# "pipeline": StableDiffusion3Pipeline,
# "device_map": "balanced"
# },
# "Realistic SDXL": {
# "path": "misri/epicrealismXL_v7FinalDestination",
# "pipeline": StableDiffusionXLPipeline,
# },
# "DreamShaper8 (SD 1.5)": {
# "path": "Lykon/dreamshaper-8",
# "pipeline": StableDiffusionPipeline,
# },
# "Anime (SD 1.5)": {
# "path": "../checkpoints/darkSushiMixMix_225D.safetensors",
# "pipeline": StableDiffusionPipeline,
# }
}
def nearest_divisible_by_8(number: int = 1024):
"""
Auto adjust the number to make it divisible by 8
"""
lower_multiple = (number // 8) * 8
upper_multiple = lower_multiple + 8
if (number - lower_multiple) < (upper_multiple - number):
return int(lower_multiple)
else:
return int(upper_multiple)
def get_gpu_info(width: int = 1024,
height: int = 1024,
num_images: int = 1) -> tuple[list, dict]:
"""
Get available GPUs info
Parameters:
- width : generated image's width
- height : generated image's height
- num_images : number of generated images per prompt
Returns:
- gpu_info and current_max_memory
"""
gpus = GPUtil.getGPUs()
gpu_info = []
current_max_memory = {}
using_fast_flux = width <= 1280 \
and height <= 1280 \
and num_images==1
for gpu in gpus:
info = {
'id': gpu.id,
'name': gpu.name,
'driver_version': gpu.driver,
'total_memory': gpu.memoryTotal, # In MB
'available_memory': gpu.memoryFree, # In MB
'used_memory': gpu.memoryUsed, # In MB
'temperature': gpu.temperature # In Celsius
}
gpu_info.append(info)
if using_fast_flux:
current_max_memory[gpu.id] = f"{math.ceil(gpu.memoryFree / 1024)}GB"
else:
current_max_memory[gpu.id] = f"{int(gpu.memoryFree / 1024)}GB"
return gpu_info, current_max_memory
def generate_number():
"""
Random an integer
Returns:
- int: an integer
"""
return random.randint(0, MAX_SEED)
def assign_gpu(required_vram, width, height, num_images):
"""
Assign GPU device
Parameters:
- required_memory (int): minimum VRAM
Returns:
- torch.device
"""
gpu_info, _ = get_gpu_info(width, height, num_images)
device = "cpu"
for gpu in gpu_info:
if gpu['available_memory'] >= required_vram:
device = f"cuda:{gpu['id']}"
if device == "cpu":
return device
return torch.device(device)
# def optimize_flux_pipeline(width, height, num_images):
# """
# Parameters:
# - width (int): generated image width
# - height (int): generated image height
# - num_images (int): number of generated images per prompt
# """
# using_fast_flux = width <= 1280 \
# and height <= 1280 \
# and num_images==1
# return using_fast_flux