Spaces:
Sleeping
Sleeping
File size: 4,397 Bytes
8eca2ce b4bf53d 8eca2ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import torch
import GPUtil
import math
import random
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, \
FluxPipeline, StableDiffusion3Pipeline
MAX_SEED = 2**32 - 1
TEXT_TO_IMAGE_DICTIONARY = {
# "FLUX.1 [schnell-dev-merged]": {
# "path": "sayakpaul/FLUX.1-merged",
# "pipeline": FluxPipeline,
# "device_map": "balanced"
# },
# "FLUX.1 [schnell]": {
# "path": "black-forest-labs/FLUX.1-schnell",
# "pipeline": FluxPipeline,
# "device_map": "balanced"
# },
# "FLUX.1 [dev]": {
# "path": "black-forest-labs/FLUX.1-dev",
# "pipeline": FluxPipeline,
# "device_map": "balanced"
# },
# "Stable Diffusion 2.1": {
# "path": "stabilityai/stable-diffusion-2-1",
# "pipeline": StableDiffusionPipeline
# },
"Stable Diffusion 3.5 Medium": {
"backend": "comfyui",
"path": "stuffs/comfyui_workflow_api/sd3_5_workflow_api.json",
"device_map": "balanced"
},
"Stable Diffusion 3.5 Large": {
"backend": "comfyui",
"path": "stuffs/comfyui_workflow_api/sd3_5_workflow_api.json",
"device_map": "balanced"
},
# "Stable Diffusion 3 Medium": {
# "path": "stabilityai/stable-diffusion-3-medium-diffusers",
# "pipeline": StableDiffusion3Pipeline,
# "device_map": "balanced"
# },
# "Realistic SDXL": {
# "path": "misri/epicrealismXL_v7FinalDestination",
# "pipeline": StableDiffusionXLPipeline,
# },
# "DreamShaper8 (SD 1.5)": {
# "path": "Lykon/dreamshaper-8",
# "pipeline": StableDiffusionPipeline,
# },
"Anime (SD 1.5)": {
"path": "../checkpoints/darkSushiMixMix_225D.safetensors",
"pipeline": StableDiffusionPipeline,
}
}
def nearest_divisible_by_8(number: int = 1024):
"""
Auto adjust the number to make it divisible by 8
"""
lower_multiple = (number // 8) * 8
upper_multiple = lower_multiple + 8
if (number - lower_multiple) < (upper_multiple - number):
return int(lower_multiple)
else:
return int(upper_multiple)
def get_gpu_info(width: int = 1024,
height: int = 1024,
num_images: int = 1) -> tuple[list, dict]:
"""
Get available GPUs info
Parameters:
- width : generated image's width
- height : generated image's height
- num_images : number of generated images per prompt
Returns:
- gpu_info and current_max_memory
"""
gpus = GPUtil.getGPUs()
gpu_info = []
current_max_memory = {}
using_fast_flux = width <= 1280 \
and height <= 1280 \
and num_images==1
for gpu in gpus:
info = {
'id': gpu.id,
'name': gpu.name,
'driver_version': gpu.driver,
'total_memory': gpu.memoryTotal, # In MB
'available_memory': gpu.memoryFree, # In MB
'used_memory': gpu.memoryUsed, # In MB
'temperature': gpu.temperature # In Celsius
}
gpu_info.append(info)
if using_fast_flux:
current_max_memory[gpu.id] = f"{math.ceil(gpu.memoryFree / 1024)}GB"
else:
current_max_memory[gpu.id] = f"{int(gpu.memoryFree / 1024)}GB"
return gpu_info, current_max_memory
def generate_number():
"""
Random an integer
Returns:
- int: an integer
"""
return random.randint(0, MAX_SEED)
def assign_gpu(required_vram, width, height, num_images):
"""
Assign GPU device
Parameters:
- required_memory (int): minimum VRAM
Returns:
- torch.device
"""
gpu_info, _ = get_gpu_info(width, height, num_images)
device = "cpu"
for gpu in gpu_info:
if gpu['available_memory'] >= required_vram:
device = f"cuda:{gpu['id']}"
if device == "cpu":
return device
return torch.device(device)
# def optimize_flux_pipeline(width, height, num_images):
# """
# Parameters:
# - width (int): generated image width
# - height (int): generated image height
# - num_images (int): number of generated images per prompt
# """
# using_fast_flux = width <= 1280 \
# and height <= 1280 \
# and num_images==1
# return using_fast_flux |