|
import os |
|
import sys |
|
import time |
|
import tqdm |
|
import torch |
|
import torchcrepe |
|
import numpy as np |
|
import soundfile as sf |
|
from multiprocessing import Pool |
|
from functools import partial |
|
import concurrent.futures |
|
import torch.nn.functional as F |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(os.path.join(now_dir)) |
|
|
|
from rvc.lib.utils import load_audio, load_embedding |
|
from rvc.lib.predictors.RMVPE import RMVPE0Predictor |
|
from rvc.configs.config import Config |
|
|
|
|
|
config = Config() |
|
|
|
|
|
def setup_paths(exp_dir: str, version: str = None): |
|
"""Set up input and output paths.""" |
|
wav_path = os.path.join(exp_dir, "sliced_audios_16k") |
|
if version: |
|
out_path = os.path.join( |
|
exp_dir, "v1_extracted" if version == "v1" else "v2_extracted" |
|
) |
|
os.makedirs(out_path, exist_ok=True) |
|
return wav_path, out_path |
|
else: |
|
output_root1 = os.path.join(exp_dir, "f0") |
|
output_root2 = os.path.join(exp_dir, "f0_voiced") |
|
os.makedirs(output_root1, exist_ok=True) |
|
os.makedirs(output_root2, exist_ok=True) |
|
return wav_path, output_root1, output_root2 |
|
|
|
|
|
def read_wave(wav_path: str, normalize: bool = False): |
|
"""Read a wave file and return its features.""" |
|
wav, sr = sf.read(wav_path) |
|
assert sr == 16000, "Sample rate must be 16000" |
|
|
|
feats = torch.from_numpy(wav).float() |
|
if config.is_half: |
|
feats = feats.half() |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
feats = feats.view(1, -1) |
|
|
|
if normalize: |
|
feats = F.layer_norm(feats, feats.shape) |
|
return feats |
|
|
|
|
|
def get_device(gpu_index): |
|
"""Get the appropriate device based on GPU availability.""" |
|
if gpu_index == "cpu": |
|
return "cpu" |
|
try: |
|
index = int(gpu_index) |
|
if index < torch.cuda.device_count(): |
|
return f"cuda:{index}" |
|
else: |
|
print("Invalid GPU index. Switching to CPU.") |
|
except ValueError: |
|
print("Invalid GPU index format. Switching to CPU.") |
|
return "cpu" |
|
|
|
|
|
class FeatureInput: |
|
"""Class for F0 extraction.""" |
|
|
|
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"): |
|
self.fs = sample_rate |
|
self.hop = hop_size |
|
self.f0_bin = 256 |
|
self.f0_max = 1100.0 |
|
self.f0_min = 50.0 |
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) |
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) |
|
self.device = device |
|
self.model_rmvpe = RMVPE0Predictor( |
|
os.path.join("rvc", "models", "predictors", "rmvpe.pt"), |
|
is_half=False, |
|
device=device, |
|
) |
|
|
|
def compute_f0(self, np_arr, f0_method, hop_length): |
|
"""Extract F0 using the specified method.""" |
|
if f0_method == "crepe": |
|
return self.get_crepe(np_arr, hop_length) |
|
elif f0_method == "rmvpe": |
|
return self.model_rmvpe.infer_from_audio(np_arr, thred=0.03) |
|
else: |
|
raise ValueError(f"Unknown F0 method: {f0_method}") |
|
|
|
def get_crepe(self, x, hop_length): |
|
"""Extract F0 using CREPE.""" |
|
audio = torch.from_numpy(x.astype(np.float32)).to(self.device) |
|
audio /= torch.quantile(torch.abs(audio), 0.999) |
|
audio = audio.unsqueeze(0) |
|
|
|
pitch = torchcrepe.predict( |
|
audio, |
|
self.fs, |
|
hop_length, |
|
self.f0_min, |
|
self.f0_max, |
|
"full", |
|
batch_size=hop_length * 2, |
|
device=self.device, |
|
pad=True, |
|
) |
|
|
|
source = pitch.squeeze(0).cpu().float().numpy() |
|
source[source < 0.001] = np.nan |
|
target = np.interp( |
|
np.arange(0, len(source) * (x.size // self.hop), len(source)) |
|
/ (x.size // self.hop), |
|
np.arange(0, len(source)), |
|
source, |
|
) |
|
return np.nan_to_num(target) |
|
|
|
def coarse_f0(self, f0): |
|
"""Convert F0 to coarse F0.""" |
|
f0_mel = 1127 * np.log(1 + f0 / 700) |
|
f0_mel = np.clip( |
|
(f0_mel - self.f0_mel_min) |
|
* (self.f0_bin - 2) |
|
/ (self.f0_mel_max - self.f0_mel_min) |
|
+ 1, |
|
1, |
|
self.f0_bin - 1, |
|
) |
|
return np.rint(f0_mel).astype(int) |
|
|
|
def process_file(self, file_info, f0_method, hop_length): |
|
"""Process a single audio file for F0 extraction.""" |
|
inp_path, opt_path1, opt_path2, np_arr = file_info |
|
|
|
if os.path.exists(opt_path1 + ".npy") and os.path.exists(opt_path2 + ".npy"): |
|
return |
|
|
|
try: |
|
feature_pit = self.compute_f0(np_arr, f0_method, hop_length) |
|
np.save(opt_path2, feature_pit, allow_pickle=False) |
|
coarse_pit = self.coarse_f0(feature_pit) |
|
np.save(opt_path1, coarse_pit, allow_pickle=False) |
|
except Exception as error: |
|
print(f"An error occurred extracting file {inp_path}: {error}") |
|
|
|
def process_files(self, files, f0_method, hop_length, pbar): |
|
"""Process multiple files.""" |
|
for file_info in files: |
|
self.process_file(file_info, f0_method, hop_length) |
|
pbar.update() |
|
|
|
|
|
def run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus): |
|
input_root, *output_roots = setup_paths(exp_dir) |
|
|
|
if len(output_roots) == 2: |
|
output_root1, output_root2 = output_roots |
|
else: |
|
output_root1 = output_roots[0] |
|
output_root2 = None |
|
|
|
paths = [ |
|
( |
|
os.path.join(input_root, name), |
|
os.path.join(output_root1, name) if output_root1 else None, |
|
os.path.join(output_root2, name) if output_root2 else None, |
|
load_audio(os.path.join(input_root, name), 16000), |
|
) |
|
for name in sorted(os.listdir(input_root)) |
|
if "spec" not in name |
|
] |
|
|
|
print(f"Starting pitch extraction with {num_processes} cores and {f0_method}...") |
|
start_time = time.time() |
|
|
|
if gpus != "-": |
|
gpus = gpus.split("-") |
|
num_gpus = len(gpus) |
|
process_partials = [] |
|
pbar = tqdm.tqdm(total=len(paths), desc="Pitch Extraction") |
|
|
|
for idx, gpu in enumerate(gpus): |
|
device = get_device(gpu) |
|
feature_input = FeatureInput(device=device) |
|
part_paths = paths[idx::num_gpus] |
|
process_partials.append((feature_input, part_paths)) |
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
futures = [ |
|
executor.submit( |
|
FeatureInput.process_files, |
|
feature_input, |
|
part_paths, |
|
f0_method, |
|
hop_length, |
|
pbar, |
|
) |
|
for feature_input, part_paths in process_partials |
|
] |
|
for future in concurrent.futures.as_completed(futures): |
|
future.result() |
|
pbar.close() |
|
|
|
else: |
|
feature_input = FeatureInput(device="cpu") |
|
with tqdm.tqdm(total=len(paths), desc="Pitch Extraction") as pbar: |
|
with Pool(processes=num_processes) as pool: |
|
process_file_partial = partial( |
|
feature_input.process_file, |
|
f0_method=f0_method, |
|
hop_length=hop_length, |
|
) |
|
for _ in pool.imap_unordered(process_file_partial, paths): |
|
pbar.update() |
|
|
|
elapsed_time = time.time() - start_time |
|
print(f"Pitch extraction completed in {elapsed_time:.2f} seconds.") |
|
|
|
|
|
def process_file_embedding(file, wav_path, out_path, model, device, version, saved_cfg): |
|
"""Process a single audio file for embedding extraction.""" |
|
wav_file_path = os.path.join(wav_path, file) |
|
out_file_path = os.path.join(out_path, file.replace("wav", "npy")) |
|
|
|
if os.path.exists(out_file_path): |
|
return |
|
|
|
feats = read_wave(wav_file_path, normalize=saved_cfg.task.normalize) |
|
dtype = torch.float16 if device.startswith("cuda") else torch.float32 |
|
feats = feats.to(dtype).to(device) |
|
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False).to(dtype).to(device) |
|
inputs = { |
|
"source": feats, |
|
"padding_mask": padding_mask, |
|
"output_layer": 9 if version == "v1" else 12, |
|
} |
|
|
|
with torch.no_grad(): |
|
model = model.to(device).to(dtype) |
|
logits = model.extract_features(**inputs) |
|
feats = model.final_proj(logits[0]) if version == "v1" else logits[0] |
|
|
|
feats = feats.squeeze(0).float().cpu().numpy() |
|
if not np.isnan(feats).any(): |
|
np.save(out_file_path, feats, allow_pickle=False) |
|
else: |
|
print(f"{file} contains NaN values and will be skipped.") |
|
|
|
|
|
def run_embedding_extraction( |
|
exp_dir, version, gpus, embedder_model, embedder_model_custom |
|
): |
|
"""Main function to orchestrate the embedding extraction process.""" |
|
wav_path, out_path = setup_paths(exp_dir, version) |
|
|
|
print("Starting embedding extraction...") |
|
start_time = time.time() |
|
|
|
models, saved_cfg, _ = load_embedding(embedder_model, embedder_model_custom) |
|
model = models[0] |
|
devices = [get_device(gpu) for gpu in (gpus.split("-") if gpus != "-" else ["cpu"])] |
|
|
|
paths = sorted([file for file in os.listdir(wav_path) if file.endswith(".wav")]) |
|
if not paths: |
|
print("No audio files found. Make sure you have provided the audios correctly.") |
|
sys.exit(1) |
|
|
|
pbar = tqdm.tqdm(total=len(paths) * len(devices), desc="Embedding Extraction") |
|
|
|
tasks = [ |
|
(file, wav_path, out_path, model, device, version, saved_cfg) |
|
for file in paths |
|
for device in devices |
|
] |
|
|
|
for task in tasks: |
|
try: |
|
process_file_embedding(*task) |
|
except Exception as error: |
|
print(f"An error occurred processing {task[0]}: {error}") |
|
pbar.update(1) |
|
|
|
pbar.close() |
|
elapsed_time = time.time() - start_time |
|
print(f"Embedding extraction completed in {elapsed_time:.2f} seconds.") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
exp_dir = sys.argv[1] |
|
f0_method = sys.argv[2] |
|
hop_length = int(sys.argv[3]) |
|
num_processes = int(sys.argv[4]) |
|
gpus = sys.argv[5] |
|
version = sys.argv[6] |
|
embedder_model = sys.argv[7] |
|
embedder_model_custom = sys.argv[8] if len(sys.argv) > 8 else None |
|
|
|
|
|
run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus) |
|
|
|
|
|
run_embedding_extraction( |
|
exp_dir, version, gpus, embedder_model, embedder_model_custom |
|
) |
|
|