|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
from librosa.filters import mel |
|
from typing import List |
|
|
|
|
|
N_MELS = 128 |
|
N_CLASS = 360 |
|
|
|
|
|
|
|
class ConvBlockRes(nn.Module): |
|
""" |
|
A convolutional block with residual connection. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
momentum (float): Momentum for batch normalization. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, momentum=0.01): |
|
super(ConvBlockRes, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), |
|
stride=(1, 1), |
|
padding=(1, 1), |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels, momentum=momentum), |
|
nn.ReLU(), |
|
nn.Conv2d( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), |
|
stride=(1, 1), |
|
padding=(1, 1), |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels, momentum=momentum), |
|
nn.ReLU(), |
|
) |
|
if in_channels != out_channels: |
|
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) |
|
self.is_shortcut = True |
|
else: |
|
self.is_shortcut = False |
|
|
|
def forward(self, x): |
|
if self.is_shortcut: |
|
return self.conv(x) + self.shortcut(x) |
|
else: |
|
return self.conv(x) + x |
|
|
|
|
|
|
|
class ResEncoderBlock(nn.Module): |
|
""" |
|
A residual encoder block. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
kernel_size (tuple): Size of the average pooling kernel. |
|
n_blocks (int): Number of convolutional blocks in the block. |
|
momentum (float): Momentum for batch normalization. |
|
""" |
|
|
|
def __init__( |
|
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01 |
|
): |
|
super(ResEncoderBlock, self).__init__() |
|
self.n_blocks = n_blocks |
|
self.conv = nn.ModuleList() |
|
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) |
|
for _ in range(n_blocks - 1): |
|
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) |
|
self.kernel_size = kernel_size |
|
if self.kernel_size is not None: |
|
self.pool = nn.AvgPool2d(kernel_size=kernel_size) |
|
|
|
def forward(self, x): |
|
for i in range(self.n_blocks): |
|
x = self.conv[i](x) |
|
if self.kernel_size is not None: |
|
return x, self.pool(x) |
|
else: |
|
return x |
|
|
|
|
|
|
|
class Encoder(nn.Module): |
|
""" |
|
The encoder part of the DeepUnet. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
in_size (int): Size of the input tensor. |
|
n_encoders (int): Number of encoder blocks. |
|
kernel_size (tuple): Size of the average pooling kernel. |
|
n_blocks (int): Number of convolutional blocks in each encoder block. |
|
out_channels (int): Number of output channels for the first encoder block. |
|
momentum (float): Momentum for batch normalization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
in_size, |
|
n_encoders, |
|
kernel_size, |
|
n_blocks, |
|
out_channels=16, |
|
momentum=0.01, |
|
): |
|
super(Encoder, self).__init__() |
|
self.n_encoders = n_encoders |
|
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) |
|
self.layers = nn.ModuleList() |
|
self.latent_channels = [] |
|
for i in range(self.n_encoders): |
|
self.layers.append( |
|
ResEncoderBlock( |
|
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum |
|
) |
|
) |
|
self.latent_channels.append([out_channels, in_size]) |
|
in_channels = out_channels |
|
out_channels *= 2 |
|
in_size //= 2 |
|
self.out_size = in_size |
|
self.out_channel = out_channels |
|
|
|
def forward(self, x: torch.Tensor): |
|
concat_tensors: List[torch.Tensor] = [] |
|
x = self.bn(x) |
|
for i in range(self.n_encoders): |
|
t, x = self.layers[i](x) |
|
concat_tensors.append(t) |
|
return x, concat_tensors |
|
|
|
|
|
|
|
class Intermediate(nn.Module): |
|
""" |
|
The intermediate layer of the DeepUnet. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
n_inters (int): Number of convolutional blocks in the intermediate layer. |
|
n_blocks (int): Number of convolutional blocks in each intermediate block. |
|
momentum (float): Momentum for batch normalization. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): |
|
super(Intermediate, self).__init__() |
|
self.n_inters = n_inters |
|
self.layers = nn.ModuleList() |
|
self.layers.append( |
|
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum) |
|
) |
|
for _ in range(self.n_inters - 1): |
|
self.layers.append( |
|
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum) |
|
) |
|
|
|
def forward(self, x): |
|
for i in range(self.n_inters): |
|
x = self.layers[i](x) |
|
return x |
|
|
|
|
|
|
|
class ResDecoderBlock(nn.Module): |
|
""" |
|
A residual decoder block. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
stride (tuple): Stride for transposed convolution. |
|
n_blocks (int): Number of convolutional blocks in the block. |
|
momentum (float): Momentum for batch normalization. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): |
|
super(ResDecoderBlock, self).__init__() |
|
out_padding = (0, 1) if stride == (1, 2) else (1, 1) |
|
self.n_blocks = n_blocks |
|
self.conv1 = nn.Sequential( |
|
nn.ConvTranspose2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), |
|
stride=stride, |
|
padding=(1, 1), |
|
output_padding=out_padding, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels, momentum=momentum), |
|
nn.ReLU(), |
|
) |
|
self.conv2 = nn.ModuleList() |
|
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) |
|
for _ in range(n_blocks - 1): |
|
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) |
|
|
|
def forward(self, x, concat_tensor): |
|
x = self.conv1(x) |
|
x = torch.cat((x, concat_tensor), dim=1) |
|
for i in range(self.n_blocks): |
|
x = self.conv2[i](x) |
|
return x |
|
|
|
|
|
|
|
class Decoder(nn.Module): |
|
""" |
|
The decoder part of the DeepUnet. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
n_decoders (int): Number of decoder blocks. |
|
stride (tuple): Stride for transposed convolution. |
|
n_blocks (int): Number of convolutional blocks in each decoder block. |
|
momentum (float): Momentum for batch normalization. |
|
""" |
|
|
|
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): |
|
super(Decoder, self).__init__() |
|
self.layers = nn.ModuleList() |
|
self.n_decoders = n_decoders |
|
for _ in range(self.n_decoders): |
|
out_channels = in_channels // 2 |
|
self.layers.append( |
|
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum) |
|
) |
|
in_channels = out_channels |
|
|
|
def forward(self, x, concat_tensors): |
|
for i in range(self.n_decoders): |
|
x = self.layers[i](x, concat_tensors[-1 - i]) |
|
return x |
|
|
|
|
|
|
|
class DeepUnet(nn.Module): |
|
""" |
|
The DeepUnet architecture. |
|
|
|
Args: |
|
kernel_size (tuple): Size of the average pooling kernel. |
|
n_blocks (int): Number of convolutional blocks in each encoder/decoder block. |
|
en_de_layers (int): Number of encoder/decoder layers. |
|
inter_layers (int): Number of convolutional blocks in the intermediate layer. |
|
in_channels (int): Number of input channels. |
|
en_out_channels (int): Number of output channels for the first encoder block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
kernel_size, |
|
n_blocks, |
|
en_de_layers=5, |
|
inter_layers=4, |
|
in_channels=1, |
|
en_out_channels=16, |
|
): |
|
super(DeepUnet, self).__init__() |
|
self.encoder = Encoder( |
|
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels |
|
) |
|
self.intermediate = Intermediate( |
|
self.encoder.out_channel // 2, |
|
self.encoder.out_channel, |
|
inter_layers, |
|
n_blocks, |
|
) |
|
self.decoder = Decoder( |
|
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks |
|
) |
|
|
|
def forward(self, x): |
|
x, concat_tensors = self.encoder(x) |
|
x = self.intermediate(x) |
|
x = self.decoder(x, concat_tensors) |
|
return x |
|
|
|
|
|
|
|
class E2E(nn.Module): |
|
""" |
|
The end-to-end model. |
|
|
|
Args: |
|
n_blocks (int): Number of convolutional blocks in each encoder/decoder block. |
|
n_gru (int): Number of GRU layers. |
|
kernel_size (tuple): Size of the average pooling kernel. |
|
en_de_layers (int): Number of encoder/decoder layers. |
|
inter_layers (int): Number of convolutional blocks in the intermediate layer. |
|
in_channels (int): Number of input channels. |
|
en_out_channels (int): Number of output channels for the first encoder block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_blocks, |
|
n_gru, |
|
kernel_size, |
|
en_de_layers=5, |
|
inter_layers=4, |
|
in_channels=1, |
|
en_out_channels=16, |
|
): |
|
super(E2E, self).__init__() |
|
self.unet = DeepUnet( |
|
kernel_size, |
|
n_blocks, |
|
en_de_layers, |
|
inter_layers, |
|
in_channels, |
|
en_out_channels, |
|
) |
|
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) |
|
if n_gru: |
|
self.fc = nn.Sequential( |
|
BiGRU(3 * 128, 256, n_gru), |
|
nn.Linear(512, N_CLASS), |
|
nn.Dropout(0.25), |
|
nn.Sigmoid(), |
|
) |
|
else: |
|
self.fc = nn.Sequential( |
|
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid() |
|
) |
|
|
|
def forward(self, mel): |
|
mel = mel.transpose(-1, -2).unsqueeze(1) |
|
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
|
|
class MelSpectrogram(torch.nn.Module): |
|
""" |
|
Extracts Mel-spectrogram features from audio. |
|
|
|
Args: |
|
is_half (bool): Whether to use half-precision floating-point numbers. |
|
n_mel_channels (int): Number of Mel-frequency bands. |
|
sample_rate (int): Sampling rate of the audio. |
|
win_length (int): Length of the window function in samples. |
|
hop_length (int): Hop size between frames in samples. |
|
n_fft (int, optional): Length of the FFT window. Defaults to None, which uses win_length. |
|
mel_fmin (int, optional): Minimum frequency for the Mel filter bank. Defaults to 0. |
|
mel_fmax (int, optional): Maximum frequency for the Mel filter bank. Defaults to None. |
|
clamp (float, optional): Minimum value for clamping the Mel-spectrogram. Defaults to 1e-5. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
is_half, |
|
n_mel_channels, |
|
sample_rate, |
|
win_length, |
|
hop_length, |
|
n_fft=None, |
|
mel_fmin=0, |
|
mel_fmax=None, |
|
clamp=1e-5, |
|
): |
|
super().__init__() |
|
n_fft = win_length if n_fft is None else n_fft |
|
self.hann_window = {} |
|
mel_basis = mel( |
|
sr=sample_rate, |
|
n_fft=n_fft, |
|
n_mels=n_mel_channels, |
|
fmin=mel_fmin, |
|
fmax=mel_fmax, |
|
htk=True, |
|
) |
|
mel_basis = torch.from_numpy(mel_basis).float() |
|
self.register_buffer("mel_basis", mel_basis) |
|
self.n_fft = win_length if n_fft is None else n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.sample_rate = sample_rate |
|
self.n_mel_channels = n_mel_channels |
|
self.clamp = clamp |
|
self.is_half = is_half |
|
|
|
def forward(self, audio, keyshift=0, speed=1, center=True): |
|
factor = 2 ** (keyshift / 12) |
|
n_fft_new = int(np.round(self.n_fft * factor)) |
|
win_length_new = int(np.round(self.win_length * factor)) |
|
hop_length_new = int(np.round(self.hop_length * speed)) |
|
keyshift_key = str(keyshift) + "_" + str(audio.device) |
|
if keyshift_key not in self.hann_window: |
|
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to( |
|
audio.device |
|
) |
|
fft = torch.stft( |
|
audio, |
|
n_fft=n_fft_new, |
|
hop_length=hop_length_new, |
|
win_length=win_length_new, |
|
window=self.hann_window[keyshift_key], |
|
center=center, |
|
return_complex=True, |
|
) |
|
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2)) |
|
if keyshift != 0: |
|
size = self.n_fft // 2 + 1 |
|
resize = magnitude.size(1) |
|
if resize < size: |
|
magnitude = F.pad(magnitude, (0, 0, 0, size - resize)) |
|
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new |
|
mel_output = torch.matmul(self.mel_basis, magnitude) |
|
if self.is_half: |
|
mel_output = mel_output.half() |
|
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp)) |
|
return log_mel_spec |
|
|
|
|
|
|
|
class RMVPE0Predictor: |
|
""" |
|
A predictor for fundamental frequency (F0) based on the RMVPE0 model. |
|
|
|
Args: |
|
model_path (str): Path to the RMVPE0 model file. |
|
is_half (bool): Whether to use half-precision floating-point numbers. |
|
device (str, optional): Device to use for computation. Defaults to None, which uses CUDA if available. |
|
""" |
|
|
|
def __init__(self, model_path, is_half, device=None): |
|
self.resample_kernel = {} |
|
model = E2E(4, 1, (2, 2)) |
|
ckpt = torch.load(model_path, map_location="cpu") |
|
model.load_state_dict(ckpt) |
|
model.eval() |
|
if is_half: |
|
model = model.half() |
|
self.model = model |
|
self.resample_kernel = {} |
|
self.is_half = is_half |
|
self.device = device |
|
self.mel_extractor = MelSpectrogram( |
|
is_half, N_MELS, 16000, 1024, 160, None, 30, 8000 |
|
).to(device) |
|
self.model = self.model.to(device) |
|
cents_mapping = 20 * np.arange(N_CLASS) + 1997.3794084376191 |
|
self.cents_mapping = np.pad(cents_mapping, (4, 4)) |
|
|
|
def mel2hidden(self, mel): |
|
""" |
|
Converts Mel-spectrogram features to hidden representation. |
|
|
|
Args: |
|
mel (torch.Tensor): Mel-spectrogram features. |
|
""" |
|
with torch.no_grad(): |
|
n_frames = mel.shape[-1] |
|
mel = F.pad( |
|
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect" |
|
) |
|
hidden = self.model(mel) |
|
return hidden[:, :n_frames] |
|
|
|
def decode(self, hidden, thred=0.03): |
|
""" |
|
Decodes hidden representation to F0. |
|
|
|
Args: |
|
hidden (np.ndarray): Hidden representation. |
|
thred (float, optional): Threshold for salience. Defaults to 0.03. |
|
""" |
|
cents_pred = self.to_local_average_cents(hidden, thred=thred) |
|
f0 = 10 * (2 ** (cents_pred / 1200)) |
|
f0[f0 == 10] = 0 |
|
return f0 |
|
|
|
def infer_from_audio(self, audio, thred=0.03): |
|
""" |
|
Infers F0 from audio. |
|
|
|
Args: |
|
audio (np.ndarray): Audio signal. |
|
thred (float, optional): Threshold for salience. Defaults to 0.03. |
|
""" |
|
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0) |
|
mel = self.mel_extractor(audio, center=True) |
|
hidden = self.mel2hidden(mel) |
|
hidden = hidden.squeeze(0).cpu().numpy() |
|
if self.is_half == True: |
|
hidden = hidden.astype("float32") |
|
f0 = self.decode(hidden, thred=thred) |
|
return f0 |
|
|
|
def to_local_average_cents(self, salience, thred=0.05): |
|
""" |
|
Converts salience to local average cents. |
|
|
|
Args: |
|
salience (np.ndarray): Salience values. |
|
thred (float, optional): Threshold for salience. Defaults to 0.05. |
|
""" |
|
center = np.argmax(salience, axis=1) |
|
salience = np.pad(salience, ((0, 0), (4, 4))) |
|
center += 4 |
|
todo_salience = [] |
|
todo_cents_mapping = [] |
|
starts = center - 4 |
|
ends = center + 5 |
|
for idx in range(salience.shape[0]): |
|
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) |
|
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) |
|
todo_salience = np.array(todo_salience) |
|
todo_cents_mapping = np.array(todo_cents_mapping) |
|
product_sum = np.sum(todo_salience * todo_cents_mapping, 1) |
|
weight_sum = np.sum(todo_salience, 1) |
|
devided = product_sum / weight_sum |
|
maxx = np.max(salience, axis=1) |
|
devided[maxx <= thred] = 0 |
|
return devided |
|
|
|
|
|
|
|
class BiGRU(nn.Module): |
|
""" |
|
A bidirectional GRU layer. |
|
|
|
Args: |
|
input_features (int): Number of input features. |
|
hidden_features (int): Number of hidden features. |
|
num_layers (int): Number of GRU layers. |
|
""" |
|
|
|
def __init__(self, input_features, hidden_features, num_layers): |
|
super(BiGRU, self).__init__() |
|
self.gru = nn.GRU( |
|
input_features, |
|
hidden_features, |
|
num_layers=num_layers, |
|
batch_first=True, |
|
bidirectional=True, |
|
) |
|
|
|
def forward(self, x): |
|
return self.gru(x)[0] |
|
|