|
import math |
|
import torch |
|
from typing import Optional |
|
|
|
from rvc.lib.algorithm.commons import sequence_mask |
|
from rvc.lib.algorithm.modules import WaveNet |
|
from rvc.lib.algorithm.normalization import LayerNorm |
|
from rvc.lib.algorithm.attentions import FFN, MultiHeadAttention |
|
|
|
|
|
class Encoder(torch.nn.Module): |
|
""" |
|
Encoder module for the Transformer model. |
|
|
|
Args: |
|
hidden_channels (int): Number of hidden channels in the encoder. |
|
filter_channels (int): Number of filter channels in the feed-forward network. |
|
n_heads (int): Number of attention heads. |
|
n_layers (int): Number of encoder layers. |
|
kernel_size (int, optional): Kernel size of the convolution layers in the feed-forward network. Defaults to 1. |
|
p_dropout (float, optional): Dropout probability. Defaults to 0.0. |
|
window_size (int, optional): Window size for relative positional encoding. Defaults to 10. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size=1, |
|
p_dropout=0.0, |
|
window_size=10, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
|
|
self.drop = torch.nn.Dropout(p_dropout) |
|
self.attn_layers = torch.nn.ModuleList() |
|
self.norm_layers_1 = torch.nn.ModuleList() |
|
self.ffn_layers = torch.nn.ModuleList() |
|
self.norm_layers_2 = torch.nn.ModuleList() |
|
for i in range(self.n_layers): |
|
self.attn_layers.append( |
|
MultiHeadAttention( |
|
hidden_channels, |
|
hidden_channels, |
|
n_heads, |
|
p_dropout=p_dropout, |
|
window_size=window_size, |
|
) |
|
) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append( |
|
FFN( |
|
hidden_channels, |
|
hidden_channels, |
|
filter_channels, |
|
kernel_size, |
|
p_dropout=p_dropout, |
|
) |
|
) |
|
self.norm_layers_2.append(LayerNorm(hidden_channels)) |
|
|
|
def forward(self, x, x_mask): |
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) |
|
x = x * x_mask |
|
for i in range(self.n_layers): |
|
y = self.attn_layers[i](x, x, attn_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_1[i](x + y) |
|
|
|
y = self.ffn_layers[i](x, x_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_2[i](x + y) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
class TextEncoder(torch.nn.Module): |
|
"""Text Encoder with configurable embedding dimension. |
|
|
|
Args: |
|
out_channels (int): Output channels of the encoder. |
|
hidden_channels (int): Hidden channels of the encoder. |
|
filter_channels (int): Filter channels of the encoder. |
|
n_heads (int): Number of attention heads. |
|
n_layers (int): Number of encoder layers. |
|
kernel_size (int): Kernel size of the convolutional layers. |
|
p_dropout (float): Dropout probability. |
|
embedding_dim (int): Embedding dimension for phone embeddings (v1 = 256, v2 = 768). |
|
f0 (bool, optional): Whether to use F0 embedding. Defaults to True. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
out_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
embedding_dim, |
|
f0=True, |
|
): |
|
super(TextEncoder, self).__init__() |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = float(p_dropout) |
|
self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels) |
|
self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True) |
|
if f0: |
|
self.emb_pitch = torch.nn.Embedding(256, hidden_channels) |
|
self.encoder = Encoder( |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
float(p_dropout), |
|
) |
|
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward( |
|
self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor |
|
): |
|
if pitch is None: |
|
x = self.emb_phone(phone) |
|
else: |
|
x = self.emb_phone(phone) + self.emb_pitch(pitch) |
|
x = x * math.sqrt(self.hidden_channels) |
|
x = self.lrelu(x) |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype) |
|
x = self.encoder(x * x_mask, x_mask) |
|
stats = self.proj(x) * x_mask |
|
|
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return m, logs, x_mask |
|
|
|
|
|
class PosteriorEncoder(torch.nn.Module): |
|
"""Posterior Encoder for inferring latent representation. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input. |
|
out_channels (int): Number of channels in the output. |
|
hidden_channels (int): Number of hidden channels in the encoder. |
|
kernel_size (int): Kernel size of the convolutional layers. |
|
dilation_rate (int): Dilation rate of the convolutional layers. |
|
n_layers (int): Number of layers in the encoder. |
|
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0, |
|
): |
|
super(PosteriorEncoder, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
|
|
self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = WaveNet( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
) |
|
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward( |
|
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None |
|
): |
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
stats = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask |
|
return z, m, logs, x_mask |
|
|
|
def remove_weight_norm(self): |
|
"""Removes weight normalization from the encoder.""" |
|
self.enc.remove_weight_norm() |
|
|
|
def __prepare_scriptable__(self): |
|
"""Prepares the module for scripting.""" |
|
for hook in self.enc._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
torch.nn.utils.remove_weight_norm(self.enc) |
|
return self |
|
|