Magnata / rvc /lib /algorithm /encoders.py
ttettheu's picture
Upload 154 files
7ef50cb verified
import math
import torch
from typing import Optional
from rvc.lib.algorithm.commons import sequence_mask
from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.normalization import LayerNorm
from rvc.lib.algorithm.attentions import FFN, MultiHeadAttention
class Encoder(torch.nn.Module):
"""
Encoder module for the Transformer model.
Args:
hidden_channels (int): Number of hidden channels in the encoder.
filter_channels (int): Number of filter channels in the feed-forward network.
n_heads (int): Number of attention heads.
n_layers (int): Number of encoder layers.
kernel_size (int, optional): Kernel size of the convolution layers in the feed-forward network. Defaults to 1.
p_dropout (float, optional): Dropout probability. Defaults to 0.0.
window_size (int, optional): Window size for relative positional encoding. Defaults to 10.
"""
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.0,
window_size=10,
**kwargs
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = torch.nn.Dropout(p_dropout)
self.attn_layers = torch.nn.ModuleList()
self.norm_layers_1 = torch.nn.ModuleList()
self.ffn_layers = torch.nn.ModuleList()
self.norm_layers_2 = torch.nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size,
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class TextEncoder(torch.nn.Module):
"""Text Encoder with configurable embedding dimension.
Args:
out_channels (int): Output channels of the encoder.
hidden_channels (int): Hidden channels of the encoder.
filter_channels (int): Filter channels of the encoder.
n_heads (int): Number of attention heads.
n_layers (int): Number of encoder layers.
kernel_size (int): Kernel size of the convolutional layers.
p_dropout (float): Dropout probability.
embedding_dim (int): Embedding dimension for phone embeddings (v1 = 256, v2 = 768).
f0 (bool, optional): Whether to use F0 embedding. Defaults to True.
"""
def __init__(
self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
embedding_dim,
f0=True,
):
super(TextEncoder, self).__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = float(p_dropout)
self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels)
self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True)
if f0:
self.emb_pitch = torch.nn.Embedding(256, hidden_channels)
self.encoder = Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
float(p_dropout),
)
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(
self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor
):
if pitch is None:
x = self.emb_phone(phone)
else:
x = self.emb_phone(phone) + self.emb_pitch(pitch)
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
x = self.lrelu(x)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
x = self.encoder(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return m, logs, x_mask
class PosteriorEncoder(torch.nn.Module):
"""Posterior Encoder for inferring latent representation.
Args:
in_channels (int): Number of channels in the input.
out_channels (int): Number of channels in the output.
hidden_channels (int): Number of hidden channels in the encoder.
kernel_size (int): Kernel size of the convolutional layers.
dilation_rate (int): Dilation rate of the convolutional layers.
n_layers (int): Number of layers in the encoder.
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
"""
def __init__(
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
):
super(PosteriorEncoder, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WaveNet(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
)
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
):
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
def remove_weight_norm(self):
"""Removes weight normalization from the encoder."""
self.enc.remove_weight_norm()
def __prepare_scriptable__(self):
"""Prepares the module for scripting."""
for hook in self.enc._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.enc)
return self