|
import torch |
|
import json |
|
import os |
|
|
|
|
|
version_config_paths = [ |
|
os.path.join("v1", "32000.json"), |
|
os.path.join("v1", "40000.json"), |
|
os.path.join("v1", "48000.json"), |
|
os.path.join("v2", "48000.json"), |
|
os.path.join("v2", "40000.json"), |
|
os.path.join("v2", "32000.json"), |
|
] |
|
|
|
|
|
def singleton(cls): |
|
instances = {} |
|
|
|
def get_instance(*args, **kwargs): |
|
if cls not in instances: |
|
instances[cls] = cls(*args, **kwargs) |
|
return instances[cls] |
|
|
|
return get_instance |
|
|
|
|
|
@singleton |
|
class Config: |
|
def __init__(self): |
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
self.is_half = self.device != "cpu" |
|
self.gpu_name = ( |
|
torch.cuda.get_device_name(int(self.device.split(":")[-1])) |
|
if self.device.startswith("cuda") |
|
else None |
|
) |
|
self.json_config = self.load_config_json() |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def load_config_json(self) -> dict: |
|
configs = {} |
|
for config_file in version_config_paths: |
|
config_path = os.path.join("rvc", "configs", config_file) |
|
with open(config_path, "r") as f: |
|
configs[config_file] = json.load(f) |
|
return configs |
|
|
|
def has_mps(self) -> bool: |
|
|
|
return torch.backends.mps.is_available() |
|
|
|
def has_xpu(self) -> bool: |
|
|
|
return hasattr(torch, "xpu") and torch.xpu.is_available() |
|
|
|
def set_precision(self, precision): |
|
if precision not in ["fp32", "fp16"]: |
|
raise ValueError("Invalid precision type. Must be 'fp32' or 'fp16'.") |
|
|
|
fp16_run_value = precision == "fp16" |
|
preprocess_target_version = "3.7" if precision == "fp16" else "3.0" |
|
preprocess_path = os.path.join( |
|
os.path.dirname(__file__), |
|
os.pardir, |
|
"rvc", |
|
"train", |
|
"preprocess", |
|
"preprocess.py", |
|
) |
|
|
|
for config_path in version_config_paths: |
|
full_config_path = os.path.join("rvc", "configs", config_path) |
|
try: |
|
with open(full_config_path, "r") as f: |
|
config = json.load(f) |
|
config["train"]["fp16_run"] = fp16_run_value |
|
with open(full_config_path, "w") as f: |
|
json.dump(config, f, indent=4) |
|
except FileNotFoundError: |
|
print(f"File not found: {full_config_path}") |
|
|
|
if os.path.exists(preprocess_path): |
|
with open(preprocess_path, "r") as f: |
|
preprocess_content = f.read() |
|
preprocess_content = preprocess_content.replace( |
|
"3.0" if precision == "fp16" else "3.7", preprocess_target_version |
|
) |
|
with open(preprocess_path, "w") as f: |
|
f.write(preprocess_content) |
|
|
|
return f"Overwritten preprocess and config.json to use {precision}." |
|
|
|
def get_precision(self): |
|
if not version_config_paths: |
|
raise FileNotFoundError("No configuration paths provided.") |
|
|
|
full_config_path = os.path.join("rvc", "configs", version_config_paths[0]) |
|
try: |
|
with open(full_config_path, "r") as f: |
|
config = json.load(f) |
|
fp16_run_value = config["train"].get("fp16_run", False) |
|
precision = "fp16" if fp16_run_value else "fp32" |
|
return precision |
|
except FileNotFoundError: |
|
print(f"File not found: {full_config_path}") |
|
return None |
|
|
|
def device_config(self) -> tuple: |
|
if self.device.startswith("cuda"): |
|
self.set_cuda_config() |
|
elif self.has_mps(): |
|
self.device = "mps" |
|
self.is_half = False |
|
self.set_precision("fp32") |
|
else: |
|
self.device = "cpu" |
|
self.is_half = False |
|
self.set_precision("fp32") |
|
|
|
|
|
x_pad, x_query, x_center, x_max = ( |
|
(3, 10, 60, 65) if self.is_half else (1, 6, 38, 41) |
|
) |
|
if self.gpu_mem is not None and self.gpu_mem <= 4: |
|
|
|
x_pad, x_query, x_center, x_max = (1, 5, 30, 32) |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
def set_cuda_config(self): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
low_end_gpus = ["16", "P40", "P10", "1060", "1070", "1080"] |
|
if ( |
|
any(gpu in self.gpu_name for gpu in low_end_gpus) |
|
and "V100" not in self.gpu_name.upper() |
|
): |
|
self.is_half = False |
|
self.set_precision("fp32") |
|
|
|
self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // ( |
|
1024**3 |
|
) |
|
|
|
|
|
def max_vram_gpu(gpu): |
|
if torch.cuda.is_available(): |
|
gpu_properties = torch.cuda.get_device_properties(gpu) |
|
total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) |
|
return total_memory_gb |
|
else: |
|
return "0" |
|
|
|
|
|
def get_gpu_info(): |
|
ngpu = torch.cuda.device_count() |
|
gpu_infos = [] |
|
if torch.cuda.is_available() or ngpu != 0: |
|
for i in range(ngpu): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
mem = int( |
|
torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 |
|
+ 0.4 |
|
) |
|
gpu_infos.append(f"{i}: {gpu_name} ({mem} GB)") |
|
if len(gpu_infos) > 0: |
|
gpu_info = "\n".join(gpu_infos) |
|
else: |
|
gpu_info = "Unfortunately, there is no compatible GPU available to support your training." |
|
return gpu_info |
|
|
|
|
|
def get_number_of_gpus(): |
|
if torch.cuda.is_available(): |
|
num_gpus = torch.cuda.device_count() |
|
return "-".join(map(str, range(num_gpus))) |
|
else: |
|
return "-" |
|
|