File size: 16,344 Bytes
7ef50cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import os, sys
import gradio as gr
import regex as re
import json
import random

from core import (
    run_tts_script,
)

from assets.i18n.i18n import I18nAuto

i18n = I18nAuto()

now_dir = os.getcwd()
sys.path.append(now_dir)

model_root = os.path.join(now_dir, "logs")
model_root_relative = os.path.relpath(model_root, now_dir)
custom_embedder_root = os.path.join(
    now_dir, "rvc", "models", "embedders", "embedders_custom"
)

os.makedirs(custom_embedder_root, exist_ok=True)

custom_embedder_root_relative = os.path.relpath(custom_embedder_root, now_dir)

names = [
    os.path.join(root, file)
    for root, _, files in os.walk(model_root_relative, topdown=False)
    for file in files
    if (
        file.endswith((".pth", ".onnx"))
        and not (file.startswith("G_") or file.startswith("D_"))
    )
]

indexes_list = [
    os.path.join(root, name)
    for root, _, files in os.walk(model_root_relative, topdown=False)
    for name in files
    if name.endswith(".index") and "trained" not in name
]

custom_embedders = [
    os.path.join(dirpath, filename)
    for dirpath, _, filenames in os.walk(custom_embedder_root_relative)
    for filename in filenames
    if filename.endswith(".pt")
]


def change_choices():
    names = [
        os.path.join(root, file)
        for root, _, files in os.walk(model_root_relative, topdown=False)
        for file in files
        if (
            file.endswith((".pth", ".onnx"))
            and not (file.startswith("G_") or file.startswith("D_"))
        )
    ]

    indexes_list = [
        os.path.join(root, name)
        for root, _, files in os.walk(model_root_relative, topdown=False)
        for name in files
        if name.endswith(".index") and "trained" not in name
    ]

    custom_embedders = [
        os.path.join(dirpath, filename)
        for dirpath, _, filenames in os.walk(custom_embedder_root_relative)
        for filename in filenames
        if filename.endswith(".pt")
    ]
    return (
        {"choices": sorted(names), "__type__": "update"},
        {"choices": sorted(indexes_list), "__type__": "update"},
        {"choices": sorted(custom_embedders), "__type__": "update"},
        {"choices": sorted(custom_embedders), "__type__": "update"},
    )


def get_indexes():
    indexes_list = [
        os.path.join(dirpath, filename)
        for dirpath, _, filenames in os.walk(model_root_relative)
        for filename in filenames
        if filename.endswith(".index") and "trained" not in filename
    ]

    return indexes_list if indexes_list else ""


def process_input(file_path):
    with open(file_path, "r") as file:
        file_contents = file.read()
    gr.Info(f"The text from the txt file has been loaded!")
    return file_contents, None


def match_index(model_file_value):
    if model_file_value:
        model_folder = os.path.dirname(model_file_value)
        model_name = os.path.basename(model_file_value)
        index_files = get_indexes()
        pattern = r"^(.*?)_"
        match = re.match(pattern, model_name)
        for index_file in index_files:
            if os.path.dirname(index_file) == model_folder:
                return index_file
            elif match and match.group(1) in os.path.basename(index_file):
                return index_file
            elif model_name in os.path.basename(index_file):
                return index_file
    return ""


def save_drop_custom_embedder(dropbox):
    if ".pt" not in dropbox:
        gr.Info(
            i18n("The file you dropped is not a valid embedder file. Please try again.")
        )
    else:
        file_name = os.path.basename(dropbox)
        custom_embedder_path = os.path.join(custom_embedder_root, file_name)
        if os.path.exists(custom_embedder_path):
            os.remove(custom_embedder_path)
        os.rename(dropbox, custom_embedder_path)
        gr.Info(
            i18n(
                "Click the refresh button to see the embedder file in the dropdown menu."
            )
        )
    return None


# TTS tab
def tts_tab():
    default_weight = random.choice(names) if names else ""
    with gr.Row():
        with gr.Row():
            model_file = gr.Dropdown(
                label=i18n("Voice Model"),
                info=i18n("Select the voice model to use for the conversion."),
                choices=sorted(names, key=lambda path: os.path.getsize(path)),
                interactive=True,
                value=default_weight,
                allow_custom_value=True,
            )
            best_default_index_path = match_index(model_file.value)
            index_file = gr.Dropdown(
                label=i18n("Index File"),
                info=i18n("Select the index file to use for the conversion."),
                choices=get_indexes(),
                value=best_default_index_path,
                interactive=True,
                allow_custom_value=True,
            )
        with gr.Column():
            refresh_button = gr.Button(i18n("Refresh"))
            unload_button = gr.Button(i18n("Unload Voice"))

            unload_button.click(
                fn=lambda: (
                    {"value": "", "__type__": "update"},
                    {"value": "", "__type__": "update"},
                ),
                inputs=[],
                outputs=[model_file, index_file],
            )

            model_file.select(
                fn=lambda model_file_value: match_index(model_file_value),
                inputs=[model_file],
                outputs=[index_file],
            )

    json_path = os.path.join("rvc", "lib", "tools", "tts_voices.json")
    with open(json_path, "r") as file:
        tts_voices_data = json.load(file)

    short_names = [voice.get("ShortName", "") for voice in tts_voices_data]

    tts_voice = gr.Dropdown(
        label=i18n("TTS Voices"),
        info=i18n("Select the TTS voice to use for the conversion."),
        choices=short_names,
        interactive=True,
        value=None,
    )

    tts_rate = gr.Slider(
        minimum=-100,
        maximum=100,
        step=1,
        label=i18n("TTS Speed"),
        info=i18n("Increase or decrease TTS speed"),
        value=0,
        interactive=True,
    )

    tts_text = gr.Textbox(
        label=i18n("Text to Synthesize"),
        info=i18n("Enter the text to synthesize."),
        placeholder=i18n("Enter text to synthesize"),
        lines=3,
    )

    txt_file = gr.File(
        label=i18n("Or you can upload a .txt file"),
        type="filepath",
    )

    with gr.Accordion(i18n("Advanced Settings"), open=False):
        with gr.Column():
            output_tts_path = gr.Textbox(
                label=i18n("Output Path for TTS Audio"),
                placeholder=i18n("Enter output path"),
                value=os.path.join(now_dir, "assets", "audios", "tts_output.wav"),
                interactive=True,
            )
            output_rvc_path = gr.Textbox(
                label=i18n("Output Path for RVC Audio"),
                placeholder=i18n("Enter output path"),
                value=os.path.join(now_dir, "assets", "audios", "tts_rvc_output.wav"),
                interactive=True,
            )
            export_format = gr.Radio(
                label=i18n("Export Format"),
                info=i18n("Select the format to export the audio."),
                choices=["WAV", "MP3", "FLAC", "OGG", "M4A"],
                value="WAV",
                interactive=True,
            )
            split_audio = gr.Checkbox(
                label=i18n("Split Audio"),
                info=i18n(
                    "Split the audio into chunks for inference to obtain better results in some cases."
                ),
                visible=True,
                value=False,
                interactive=True,
            )
            autotune = gr.Checkbox(
                label=i18n("Autotune"),
                info=i18n(
                    "Apply a soft autotune to your inferences, recommended for singing conversions."
                ),
                visible=True,
                value=False,
                interactive=True,
            )
            clean_audio = gr.Checkbox(
                label=i18n("Clean Audio"),
                info=i18n(
                    "Clean your audio output using noise detection algorithms, recommended for speaking audios."
                ),
                visible=True,
                value=True,
                interactive=True,
            )
            clean_strength = gr.Slider(
                minimum=0,
                maximum=1,
                label=i18n("Clean Strength"),
                info=i18n(
                    "Set the clean-up level to the audio you want, the more you increase it the more it will clean up, but it is possible that the audio will be more compressed."
                ),
                visible=True,
                value=0.5,
                interactive=True,
            )
            upscale_audio = gr.Checkbox(
                label=i18n("Upscale Audio"),
                info=i18n(
                    "Upscale the audio to a higher quality, recommended for low-quality audios. (It could take longer to process the audio)"
                ),
                visible=True,
                value=False,
                interactive=True,
            )
            pitch = gr.Slider(
                minimum=-24,
                maximum=24,
                step=1,
                label=i18n("Pitch"),
                info=i18n(
                    "Set the pitch of the audio, the higher the value, the higher the pitch."
                ),
                value=0,
                interactive=True,
            )
            filter_radius = gr.Slider(
                minimum=0,
                maximum=7,
                label=i18n("Filter Radius"),
                info=i18n(
                    "If the number is greater than or equal to three, employing median filtering on the collected tone results has the potential to decrease respiration."
                ),
                value=3,
                step=1,
                interactive=True,
            )
            index_rate = gr.Slider(
                minimum=0,
                maximum=1,
                label=i18n("Search Feature Ratio"),
                info=i18n(
                    "Influence exerted by the index file; a higher value corresponds to greater influence. However, opting for lower values can help mitigate artifacts present in the audio."
                ),
                value=0.75,
                interactive=True,
            )
            rms_mix_rate = gr.Slider(
                minimum=0,
                maximum=1,
                label=i18n("Volume Envelope"),
                info=i18n(
                    "Substitute or blend with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is employed."
                ),
                value=1,
                interactive=True,
            )
            protect = gr.Slider(
                minimum=0,
                maximum=0.5,
                label=i18n("Protect Voiceless Consonants"),
                info=i18n(
                    "Safeguard distinct consonants and breathing sounds to prevent electro-acoustic tearing and other artifacts. Pulling the parameter to its maximum value of 0.5 offers comprehensive protection. However, reducing this value might decrease the extent of protection while potentially mitigating the indexing effect."
                ),
                value=0.5,
                interactive=True,
            )
            hop_length = gr.Slider(
                minimum=1,
                maximum=512,
                step=1,
                label=i18n("Hop Length"),
                info=i18n(
                    "Denotes the duration it takes for the system to transition to a significant pitch change. Smaller hop lengths require more time for inference but tend to yield higher pitch accuracy."
                ),
                value=128,
                interactive=True,
            )
            f0_method = gr.Radio(
                label=i18n("Pitch extraction algorithm"),
                info=i18n(
                    "Pitch extraction algorithm to use for the audio conversion. The default algorithm is rmvpe, which is recommended for most cases."
                ),
                choices=[
                    "crepe",
                    "crepe-tiny",
                    "rmvpe",
                    "fcpe",
                    "hybrid[rmvpe+fcpe]",
                ],
                value="rmvpe",
                interactive=True,
            )
            embedder_model = gr.Radio(
                label=i18n("Embedder Model"),
                info=i18n("Model used for learning speaker embedding."),
                choices=[
                    "contentvec",
                    "japanese-hubert-base",
                    "chinese-hubert-large",
                    "custom",
                ],
                value="contentvec",
                interactive=True,
            )
            with gr.Column(visible=False) as embedder_custom:
                with gr.Accordion(i18n("Custom Embedder"), open=True):
                    embedder_upload_custom = gr.File(
                        label=i18n("Upload Custom Embedder"),
                        type="filepath",
                        interactive=True,
                    )
                    embedder_custom_refresh = gr.Button(i18n("Refresh"))
                    embedder_model_custom = gr.Dropdown(
                        label=i18n("Custom Embedder"),
                        info=i18n(
                            "Select the custom embedder to use for the conversion."
                        ),
                        choices=sorted(custom_embedders),
                        interactive=True,
                        allow_custom_value=True,
                    )
            f0_file = gr.File(
                label=i18n(
                    "The f0 curve represents the variations in the base frequency of a voice over time, showing how pitch rises and falls."
                ),
                visible=True,
            )

    convert_button1 = gr.Button(i18n("Convert"))

    with gr.Row():
        vc_output1 = gr.Textbox(
            label=i18n("Output Information"),
            info=i18n("The output information will be displayed here."),
        )
        vc_output2 = gr.Audio(label=i18n("Export Audio"))

    def toggle_visible(checkbox):
        return {"visible": checkbox, "__type__": "update"}

    def toggle_visible_embedder_custom(embedder_model):
        if embedder_model == "custom":
            return {"visible": True, "__type__": "update"}
        return {"visible": False, "__type__": "update"}

    clean_audio.change(
        fn=toggle_visible,
        inputs=[clean_audio],
        outputs=[clean_strength],
    )
    refresh_button.click(
        fn=change_choices,
        inputs=[],
        outputs=[model_file, index_file],
    )
    txt_file.upload(
        fn=process_input,
        inputs=[txt_file],
        outputs=[tts_text, txt_file],
    )
    embedder_model.change(
        fn=toggle_visible_embedder_custom,
        inputs=[embedder_model],
        outputs=[embedder_custom],
    )
    embedder_upload_custom.upload(
        fn=save_drop_custom_embedder,
        inputs=[embedder_upload_custom],
        outputs=[embedder_upload_custom],
    )
    embedder_custom_refresh.click(
        fn=change_choices,
        inputs=[],
        outputs=[model_file, index_file, embedder_model_custom],
    )
    convert_button1.click(
        fn=run_tts_script,
        inputs=[
            tts_text,
            tts_voice,
            tts_rate,
            pitch,
            filter_radius,
            index_rate,
            rms_mix_rate,
            protect,
            hop_length,
            f0_method,
            output_tts_path,
            output_rvc_path,
            model_file,
            index_file,
            split_audio,
            autotune,
            clean_audio,
            clean_strength,
            export_format,
            upscale_audio,
            f0_file,
            embedder_model,
            embedder_model_custom,
        ],
        outputs=[vc_output1, vc_output2],
    )