Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
import torchaudio | |
import os | |
import numpy as np | |
import base64 | |
from audiocraft.models import MusicGen | |
# # Before | |
# batch_size = 64 | |
# | |
# # After | |
# batch_size = 32 | |
torch.cuda.empty_cache() | |
genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop"] | |
def load_model(): | |
model = MusicGen.get_pretrained('facebook/musicgen-small') | |
return model | |
def generate_music_tensors(description, duration: int): | |
print("Description: ", description) | |
print("Duration: ", duration) | |
model = load_model() | |
model.set_generation_params( | |
use_sampling=True, | |
top_k=250, | |
duration=duration | |
) | |
with st.spinner("Generating Music..."): | |
output = model.generate( | |
descriptions=[description], | |
progress=True, | |
return_tokens=True | |
) | |
st.success("Music Generation Complete!") | |
return output[0] | |
def save_audio(samples: torch.Tensor): | |
print("Samples (inside function): ", samples) | |
sample_rate = 30000 | |
save_path = "audio_output/" | |
sample= samples[0] | |
assert sample.dim() == 2 or sample.dim() == 3 | |
sample = sample.detach().cpu() | |
if sample.dim() == 2: | |
sample = sample[None, ...] | |
for idx, audio in enumerate(sample): | |
audio_path = os.path.join(save_path, f"audio_{idx}.wav") | |
torchaudio.save(audio_path, audio, sample_rate) | |
def get_binary_file_downloader_html(bin_file, file_label='File'): | |
with open(bin_file, 'rb') as f: | |
data = f.read() | |
bin_str = base64.b64encode(data).decode() | |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>' | |
return href | |
st.set_page_config( | |
page_icon= "musical_note", | |
page_title= "AI Music Composer" | |
) | |
def main(): | |
st.title("๐งAI Music Composer ๐ต") | |
# st.subheader("Craft your perfect melody!") | |
# bpm = st.number_input("Enter Speed in BPM", min_value=60) | |
text_area = st.text_area('Ex : Create an epic and majestic theme for a historical documentary or period drama.') | |
st.text('') | |
# Dropdown for genres | |
selected_genre = st.selectbox("Select Genre", genres) | |
# st.subheader("2. Select time duration (In Seconds)") | |
mood = st.selectbox("Select Mood (Optional)", ["Happy", "Sad", "Angry", "Relaxed", "Energetic"]) | |
instrument = st.selectbox("Select Instrument (Optional)", ["Piano", "Guitar", "Flute", "Violin", "Drums"]) | |
tempo = st.selectbox("Select Tempo (Optional)", ["Slow", "Moderate", "Fast"]) | |
time_slider = st.slider("Select time duration (In Seconds)", 0, 60, 10) | |
# melody = st.text_input("Enter Melody or Chord Progression (Optional) e.g: C D:min G:7 C, Twinkle Twinkle Little Star", " ") | |
if st.button('Let\'s Generate ๐ถ'): | |
st.text('\n\n') | |
st.subheader("Generated Music") | |
# Generate audio | |
description = text_area # Initialize description with text_area | |
if selected_genre: | |
description += f" {selected_genre}" | |
st.empty() # Hide the selected_genre selectbox after selecting one option | |
# if bpm: | |
# description += f" {bpm} BPM" | |
if mood: | |
description += f" {mood}" | |
st.empty() # Hide the mood selectbox after selecting one option | |
if instrument: | |
description += f" {instrument}" | |
st.empty() # Hide the instrument selectbox after selecting one option | |
if tempo: | |
description += f" {tempo}" | |
st.empty() # Hide the tempo selectbox after selecting one option | |
# if melody: | |
# description += f" {melody}" | |
# Clear CUDA memory cache before generating music | |
torch.cuda.empty_cache() | |
st.json({ | |
'Your Description': description, | |
'Selected Time Duration (in Seconds)': time_slider | |
}) | |
music_tensors = generate_music_tensors(description, time_slider) | |
# Only play the full audio for index 0 | |
# idx = 0 | |
# music_tensor = music_tensors[idx] | |
# music_tensor = 1 | |
save_audio(music_tensors) | |
audio_filepath = f'audio_output/audio_0.wav' | |
audio_file = open(audio_filepath, 'rb') | |
audio_bytes = audio_file.read() | |
# Play the full audio | |
st.audio(audio_bytes) | |
st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio'), unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() |