File size: 4,532 Bytes
49ad2ae
 
 
 
 
 
 
 
a836619
 
 
 
 
49ad2ae
 
 
 
 
 
 
 
 
 
a836619
 
49ad2ae
 
 
 
 
 
 
 
 
 
a836619
49ad2ae
 
 
 
 
a836619
49ad2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a836619
49ad2ae
 
 
a836619
49ad2ae
a836619
 
49ad2ae
a836619
49ad2ae
 
 
 
a836619
 
 
 
 
 
 
49ad2ae
 
a836619
49ad2ae
 
 
 
 
 
 
 
a836619
 
49ad2ae
 
 
 
 
 
 
 
 
a836619
 
49ad2ae
 
 
a836619
 
 
 
49ad2ae
 
 
 
 
 
 
 
 
 
 
 
a836619
49ad2ae
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
import torch
import torchaudio
import os
import numpy as np
import base64
from audiocraft.models import MusicGen

# # Before
# batch_size = 64
#
# # After
# batch_size = 32
torch.cuda.empty_cache()

genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop"]

@st.cache_resource()
def load_model():
    model = MusicGen.get_pretrained('facebook/musicgen-small')
    return model

def generate_music_tensors(description, duration: int):
    print("Description: ", description)
    print("Duration: ", duration)
    model = load_model()

    model.set_generation_params(
        use_sampling=True,
        top_k=250,
        duration=duration
    )

    with st.spinner("Generating Music..."):
        output = model.generate(
            descriptions=[description],
            progress=True,
            return_tokens=True
        )

    st.success("Music Generation Complete!")
    return output[0]

def save_audio(samples: torch.Tensor):
    print("Samples (inside function): ", samples)
    sample_rate = 30000
    save_path = "audio_output/"
    sample= samples[0]
    assert sample.dim() == 2 or sample.dim() == 3

    sample = sample.detach().cpu()
    if sample.dim() == 2:
        sample = sample[None, ...]

    for idx, audio in enumerate(sample):
        audio_path = os.path.join(save_path, f"audio_{idx}.wav")
        torchaudio.save(audio_path, audio, sample_rate)

def get_binary_file_downloader_html(bin_file, file_label='File'):
    with open(bin_file, 'rb') as f:
        data = f.read()
    bin_str = base64.b64encode(data).decode()
    href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>'
    return href

st.set_page_config(
    page_icon= "musical_note",
    page_title= "AI Music Composer"
)

def main():
    st.title("🎧AI Music Composer 🎵")

    # st.subheader("Craft your perfect melody!")
    # bpm = st.number_input("Enter Speed in BPM", min_value=60)

    text_area = st.text_area('Ex : Create an epic and majestic theme for a historical documentary or period drama.')
    st.text('')
    # Dropdown for genres
    selected_genre = st.selectbox("Select Genre", genres)

    # st.subheader("2. Select time duration (In Seconds)")

    mood = st.selectbox("Select Mood (Optional)", ["Happy", "Sad", "Angry", "Relaxed", "Energetic"])
    instrument = st.selectbox("Select Instrument (Optional)", ["Piano", "Guitar", "Flute", "Violin", "Drums"])
    tempo = st.selectbox("Select Tempo (Optional)", ["Slow", "Moderate", "Fast"])
    time_slider = st.slider("Select time duration (In Seconds)", 0, 60, 10)
    # melody = st.text_input("Enter Melody or Chord Progression (Optional) e.g: C D:min G:7 C, Twinkle Twinkle Little Star", " ")

    if st.button('Let\'s Generate 🎶'):

        st.text('\n\n')
        st.subheader("Generated Music")
        
        # Generate audio
        description = text_area  # Initialize description with text_area
        if selected_genre:
            description += f" {selected_genre}"
            st.empty()  # Hide the selected_genre selectbox after selecting one option
        # if bpm:
        #     description += f" {bpm} BPM"
        if mood:
            description += f" {mood}"
            st.empty()  # Hide the mood selectbox after selecting one option
        if instrument:
            description += f" {instrument}"
            st.empty()  # Hide the instrument selectbox after selecting one option
        if tempo:
            description += f" {tempo}"
            st.empty()  # Hide the tempo selectbox after selecting one option
        # if melody:
        #     description += f" {melody}"

        # Clear CUDA memory cache before generating music
        torch.cuda.empty_cache()
        st.json({
            'Your Description': description,
            'Selected Time Duration (in Seconds)': time_slider
        })
        music_tensors = generate_music_tensors(description, time_slider)

        # Only play the full audio for index 0
        # idx = 0
        # music_tensor = music_tensors[idx]
        # music_tensor = 1
        save_audio(music_tensors)
        audio_filepath = f'audio_output/audio_0.wav'
        audio_file = open(audio_filepath, 'rb')
        audio_bytes = audio_file.read()

        # Play the full audio
        st.audio(audio_bytes)
        st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio'), unsafe_allow_html=True)

if __name__ == "__main__":
    main()