Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import WhisperForConditionalGeneration | |
from transformers import WhisperFeatureExtractor | |
from transformers import WhisperTokenizer | |
from transformers import pipeline | |
checkpoint = "tsobolev/whisper-small-ka" | |
feature_extractor = WhisperFeatureExtractor.from_pretrained(checkpoint) | |
tokenizer = WhisperTokenizer.from_pretrained(checkpoint, language="georgian", task="transcribe") | |
model = WhisperForConditionalGeneration.from_pretrained(checkpoint) | |
forced_decoder_ids = tokenizer.get_decoder_prompt_ids(language="georgian", task="transcribe") | |
asr_pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
feature_extractor=feature_extractor, | |
tokenizer=tokenizer, | |
chunk_length_s=30, | |
stride_length_s=(4, 2) | |
) | |
def transcribe_ge(speech): | |
text = asr_pipe( | |
speech, | |
generate_kwargs={"forced_decoder_ids": forced_decoder_ids} | |
)["text"] | |
return text | |
title = "Whisper small finetuned on CV14 dataset" | |
description = """ | |
Demo for speech-to-text translation | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=transcribe_ge, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Textbox(), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=transcribe_ge, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Textbox(), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() |