File size: 4,402 Bytes
a120d23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import torch
import torchaudio
import random
import itertools
import numpy as np
from tools.mix import mix
def normalize_wav(waveform):
waveform = waveform - torch.mean(waveform)
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
return waveform * 0.5
def pad_wav(waveform, segment_length):
waveform_length = len(waveform)
if segment_length is None or waveform_length == segment_length:
return waveform
elif waveform_length > segment_length:
return waveform[:segment_length]
else:
pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device)
waveform = torch.cat([waveform, pad_wav])
return waveform
def _pad_spec(fbank, target_length=1024):
batch, n_frames, channels = fbank.shape
p = target_length - n_frames
if p > 0:
pad = torch.zeros(batch, p, channels).to(fbank.device)
fbank = torch.cat([fbank, pad], 1)
elif p < 0:
fbank = fbank[:, :target_length, :]
if channels % 2 != 0:
fbank = fbank[:, :, :-1]
return fbank
def read_wav_file(filename, segment_length):
waveform, sr = torchaudio.load(filename) # Faster!!!
try:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)[0]
except:
print ("0 length wav encountered. Setting to random:", filename)
waveform = torch.rand(160000)
try:
waveform = normalize_wav(waveform)
except:
print ("Exception normalizing:", filename)
waveform = torch.ones(160000)
waveform = pad_wav(waveform, segment_length).unsqueeze(0)
waveform = waveform / torch.max(torch.abs(waveform))
waveform = 0.5 * waveform
return waveform
def get_mel_from_wav(audio, _stft):
audio = torch.nan_to_num(torch.clip(audio, -1, 1))
audio = torch.autograd.Variable(audio, requires_grad=False)
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
return melspec, log_magnitudes_stft, energy
def wav_to_fbank(paths, target_length=1024, fn_STFT=None):
assert fn_STFT is not None
waveform = torch.cat([read_wav_file(path, target_length * 160) for path in paths], 0) # hop size is 160
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = fbank.transpose(1, 2)
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank, log_magnitudes_stft, waveform
def uncapitalize(s):
if s:
return s[:1].lower() + s[1:]
else:
return ""
def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1024):
sound1 = read_wav_file(path1, target_length * 160)[0].numpy()
sound2 = read_wav_file(path2, target_length * 160)[0].numpy()
mixed_sound = mix(sound1, sound2, 0.5, 16000).reshape(1, -1)
mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2))
return mixed_sound, mixed_caption
def augment(paths, texts, num_items=4, target_length=1024):
mixed_sounds, mixed_captions = [], []
combinations = list(itertools.combinations(list(range(len(texts))), 2))
random.shuffle(combinations)
if len(combinations) < num_items:
selected_combinations = combinations
else:
selected_combinations = combinations[:num_items]
for (i, j) in selected_combinations:
new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length)
mixed_sounds.append(new_sound)
mixed_captions.append(new_caption)
waveform = torch.tensor(np.concatenate(mixed_sounds, 0))
waveform = waveform / torch.max(torch.abs(waveform))
waveform = 0.5 * waveform
return waveform, mixed_captions
def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1024, fn_STFT=None):
assert fn_STFT is not None
waveform, captions = augment(paths, texts)
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = fbank.transpose(1, 2)
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank, log_magnitudes_stft, waveform, captions |