Spaces:
Runtime error
Runtime error
import os | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
from norfair import Detection | |
class YOLO: | |
def __init__(self, model_path: str, device: Optional[str] = None): | |
if device is not None and "cuda" in device and not torch.cuda.is_available(): | |
raise Exception("Selected device='cuda', but cuda is not available to Pytorch.") | |
# automatically set device if its None | |
elif device is None: | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if not os.path.exists(model_path): | |
os.system( | |
f"wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/{os.path.basename(model_path)} -O {model_path}" | |
) | |
# load model | |
try: | |
self.model = torch.hub.load("WongKinYiu/yolov7", "custom", model_path) | |
except: | |
raise Exception("Failed to load model from {}".format(model_path)) | |
def __call__( | |
self, | |
img: Union[str, np.ndarray], | |
conf_threshold: float = 0.25, | |
iou_threshold: float = 0.45, | |
image_size: int = 720, | |
classes: Optional[List[int]] = None, | |
) -> torch.tensor: | |
self.model.conf = conf_threshold | |
self.model.iou = iou_threshold | |
if classes is not None: | |
self.model.classes = classes | |
detections = self.model(img, size=image_size) | |
return detections | |
def yolo_detections_to_norfair_detections( | |
yolo_detections: torch.tensor, track_points: str = "centroid" # bbox or centroid | |
) -> List[Detection]: | |
"""convert detections_as_xywh to norfair detections""" | |
norfair_detections: List[Detection] = [] | |
if track_points == "centroid": | |
detections_as_xywh = yolo_detections.xywh[0] | |
for detection_as_xywh in detections_as_xywh: | |
centroid = np.array([detection_as_xywh[0].item(), detection_as_xywh[1].item()]) | |
scores = np.array([detection_as_xywh[4].item()]) | |
norfair_detections.append(Detection(points=centroid, scores=scores)) | |
elif track_points == "bbox": | |
detections_as_xyxy = yolo_detections.xyxy[0] | |
for detection_as_xyxy in detections_as_xyxy: | |
bbox = np.array( | |
[ | |
[detection_as_xyxy[0].item(), detection_as_xyxy[1].item()], | |
[detection_as_xyxy[2].item(), detection_as_xyxy[3].item()], | |
] | |
) | |
scores = np.array([detection_as_xyxy[4].item(), detection_as_xyxy[4].item()]) | |
norfair_detections.append(Detection(points=bbox, scores=scores)) | |
return norfair_detections | |