Spaces:
Runtime error
Runtime error
File size: 3,554 Bytes
fca2efd 210ae8c 3647577 7204716 fca2efd 210ae8c de42222 210ae8c 7204716 088dea4 fca2efd 210ae8c fca2efd de99e8e 0cb2d2a fca2efd 9d1a8a7 7204716 088dea4 b17ce0d fca2efd 210ae8c fca2efd 30935b4 fca2efd 8a03fb5 de42222 7204716 210ae8c fca2efd 9d1a8a7 7204716 9d1a8a7 fca2efd 7204716 fca2efd 7204716 8a03fb5 7204716 9d1a8a7 fca2efd 367d735 b17ce0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import numpy as np
from norfair import AbsolutePaths, Paths, Tracker, Video
from norfair.camera_motion import HomographyTransformationGetter, MotionEstimator
from norfair.distances import create_normalized_mean_euclidean_distance
from custom_models import YOLO, yolo_detections_to_norfair_detections
from demo_utils.configuration import (
DISTANCE_THRESHOLD_BBOX,
DISTANCE_THRESHOLD_CENTROID,
examples,
models_path,
style,
)
from demo_utils.draw import center, draw
def inference(
input_video: str,
model: str = "YOLOv7 Tiny",
features: str = [0, 1],
track_points: str = "Bounding box",
model_threshold: float = 0.25,
):
coord_transformations = None
paths_drawer = None
fix_paths = False
classes = None
track_points = style[track_points]
model = YOLO(models_path[model])
video = Video(input_path=input_video)
motion_estimation = len(features) > 0 and (
features[0] == 0 or (len(features) > 1 and features[1] == 0)
)
drawing_paths = len(features) > 0 and (
features[0] == 1 or (len(features) > 1 and features[1] == 1)
)
if motion_estimation:
transformations_getter = HomographyTransformationGetter()
motion_estimator = MotionEstimator(
max_points=500, min_distance=7, transformations_getter=transformations_getter
)
distance_function = "iou" if track_points == style["Bounding box"] else "euclidean"
distance_threshold = (
DISTANCE_THRESHOLD_BBOX
if track_points == style["Bounding box"]
else DISTANCE_THRESHOLD_CENTROID
)
if motion_estimation and drawing_paths:
fix_paths = True
# Examples configuration
for example in examples:
if example not in input_video:
continue
fix_paths = examples[example]["absolute_path"]
distance_threshold = examples[example]["distance_threshold"]
classes = examples[example]["classes"]
print(f"Set config to {example}: {fix_paths} {distance_threshold} {classes}")
break
tracker = Tracker(
distance_function=distance_function,
distance_threshold=distance_threshold,
)
if drawing_paths:
paths_drawer = Paths(center, attenuation=0.01)
if fix_paths:
paths_drawer = AbsolutePaths(max_history=50, thickness=2)
for frame in video:
yolo_detections = model(
frame,
conf_threshold=model_threshold,
iou_threshold=0.45,
image_size=720,
classes=classes,
)
detections = yolo_detections_to_norfair_detections(
yolo_detections, track_points=track_points
)
tracked_objects = tracker.update(
detections=detections, coord_transformations=coord_transformations
)
if motion_estimation:
mask = np.ones(frame.shape[:2], frame.dtype)
if track_points == "bbox":
for det in detections:
i = det.points.astype(int)
mask[i[0, 1] : i[1, 1], i[0, 0] : i[1, 0]] = 0
coord_transformations = motion_estimator.update(frame, mask)
frame = draw(
paths_drawer,
track_points,
frame,
detections,
tracked_objects,
coord_transformations,
fix_paths,
)
video.write(frame)
base_file_name = input_video.split("/")[-1].split(".")[0]
file_name = base_file_name + "_out.mp4"
return file_name
|