File size: 2,933 Bytes
fca2efd
00738ec
fca2efd
 
210ae8c
3647577
fca2efd
210ae8c
 
 
 
088dea4
 
fca2efd
210ae8c
 
fca2efd
 
 
 
 
210ae8c
fca2efd
 
 
b17ce0d
 
fca2efd
 
 
9d1a8a7
088dea4
 
b17ce0d
fca2efd
210ae8c
 
 
 
 
 
 
 
9d1a8a7
 
 
fca2efd
 
 
 
30935b4
fca2efd
 
 
 
 
 
210ae8c
fca2efd
 
 
 
 
 
 
 
9d1a8a7
 
 
fca2efd
 
088dea4
fca2efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1a8a7
 
 
 
 
 
 
 
 
fca2efd
 
367d735
 
b17ce0d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import tempfile

import numpy as np
from norfair import AbsolutePaths, Paths, Tracker, Video
from norfair.camera_motion import HomographyTransformationGetter, MotionEstimator

from custom_models import YOLO, yolo_detections_to_norfair_detections
from demo_utils.configuration import (
    DISTANCE_THRESHOLD_BBOX,
    DISTANCE_THRESHOLD_CENTROID,
    models_path,
    style,
)
from demo_utils.distance_function import euclidean_distance, iou
from demo_utils.draw import center, draw


def inference(
    input_video: str,
    model: str,
    features: str,
    track_points: str,
    model_threshold: str,
):
    # temp_dir = tempfile.TemporaryDirectory()
    # output_path = temp_dir.name

    coord_transformations = None
    paths_drawer = None
    fix_paths = False
    track_points = style[track_points]
    model = YOLO(models_path[model])
    video = Video(input_path=input_video)

    motion_estimation = len(features) > 0 and (
        features[0] == 0 or (len(features) > 1 and features[1] == 0)
    )

    drawing_paths = len(features) > 0 and (
        features[0] == 1 or (len(features) > 1 and features[1] == 1)
    )

    if motion_estimation and drawing_paths:
        fix_paths = True

    if motion_estimation:
        transformations_getter = HomographyTransformationGetter()

        motion_estimator = MotionEstimator(
            max_points=500, min_distance=7, transformations_getter=transformations_getter
        )

    distance_function = iou if track_points == "bbox" else euclidean_distance
    distance_threshold = (
        DISTANCE_THRESHOLD_BBOX if track_points == "bbox" else DISTANCE_THRESHOLD_CENTROID
    )

    tracker = Tracker(
        distance_function=distance_function,
        distance_threshold=distance_threshold,
    )

    if drawing_paths:
        paths_drawer = Paths(center, attenuation=0.01)

    if fix_paths:
        paths_drawer = AbsolutePaths(max_history=5, thickness=2)

    for frame in video:
        yolo_detections = model(
            frame, conf_threshold=model_threshold, iou_threshold=0.45, image_size=720
        )

        mask = np.ones(frame.shape[:2], frame.dtype)

        if motion_estimation:
            coord_transformations = motion_estimator.update(frame, mask)

        detections = yolo_detections_to_norfair_detections(
            yolo_detections, track_points=track_points
        )

        tracked_objects = tracker.update(
            detections=detections, coord_transformations=coord_transformations
        )

        frame = draw(
            paths_drawer,
            track_points,
            frame,
            detections,
            tracked_objects,
            coord_transformations,
            fix_paths,
        )
        video.write(frame)

    base_file_name = input_video.split("/")[-1].split(".")[0]
    file_name = base_file_name + "_out.mp4"
    
    # return os.path.join(output_path, file_name)

    return file_name