File size: 1,224 Bytes
3d6c603
b17ce0d
3d6c603
bd2ff06
 
fca2efd
bd2ff06
ceed5f5
 
547bded
fca2efd
547bded
fca2efd
210ae8c
 
 
 
31aaaec
210ae8c
 
dfb84ad
fca2efd
 
088dea4
fca2efd
 
 
 
9beafe7
3d6c603
547bded
3d6c603
210ae8c
3d6c603
b17ce0d
9beafe7
 
 
 
6848665
9beafe7
 
 
 
 
6848665
0cb2d2a
3d6c603
bd2ff06
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import tempfile

import gradio as gr

from inference import inference

input_video = gr.Video(mirror_webcam=False)

cb_cache_output = gr.Checkbox(value=True, label="Use chache example result")

dd_model = gr.Dropdown(choices=["YOLOv7", "YOLOv7 Tiny"], value="YOLOv7", label="Model")

features = gr.CheckboxGroup(
    choices=["Track camera movement", "Draw objects paths"],
    value=["Track camera movement", "Draw objects paths"],
    label="Features",
    type="index",
)

cb_path_draw = gr.Checkbox(value=True, label="Draw objects paths")

dd_track_points = gr.Dropdown(
    choices=["Bounding box", "Centroid"], value="Bounding box", label="Detections style"
)

slide_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Model confidence threshold")

intput_components = [
        input_video,
        cb_cache_output,
        dd_model,
        features,
        dd_track_points,
        slide_threshold
    ]

output_components = "playablevideo"

example_list = [["examples/" + example] for example in os.listdir("examples")]

iface = gr.Interface(
    fn=inference,
    inputs=intput_components,
    outputs=output_components,
    examples=example_list,
    cache_examples=True,
)

iface.launch()