blogpost-cqa / app.py
rgallardo's picture
Create chatbot interface
c152a6e
raw
history blame
2.37 kB
from transformers import AutoTokenizer
import time
import gradio as gr
from optimum.onnxruntime import ORTModelForSeq2SeqLM
from optimum.utils import NormalizedConfigManager
@classmethod
def _new_get_normalized_config_class(cls, model_type):
return cls._conf["t5"]
NormalizedConfigManager.get_normalized_config_class = _new_get_normalized_config_class
N = 2 # Number of previous QA pairs to use for context
MAX_NEW_TOKENS = 128 # Maximum number of tokens for each answer
tokenizer = AutoTokenizer.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx")
model = ORTModelForSeq2SeqLM.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx")
with open("context_short.txt", "r") as f:
context = f.read()
def build_input(question, state=[[],[]]):
model_input = f"{context} || "
previous = min(len(state[1][1:]), N)
for i in range(previous, 0, -1):
prev_question = state[0][-i-1]
prev_answer = state[1][-i]
model_input += f"<Q{i}> {prev_question} <A{i}> {prev_answer} "
model_input += f"<Q> {question} <A> "
return model_input
def get_model_answer(question, state=[[],[]]):
start = time.perf_counter()
model_input = build_input(question, state)
end = time.perf_counter()
print(f"Build input: {end-start}")
start = time.perf_counter()
encoded_inputs = tokenizer(model_input, max_length=3000, truncation=True, return_tensors="pt")
input_ids, attention_mask = (
encoded_inputs.input_ids,
encoded_inputs.attention_mask
)
end = time.perf_counter()
print(f"Tokenize: {end-start}")
start = time.perf_counter()
encoded_output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=MAX_NEW_TOKENS)
answer = tokenizer.decode(encoded_output[0], skip_special_tokens=True)
end = time.perf_counter()
print(f"Generate: {end-start}")
state[0].append(question)
state[1].append(answer)
responses = [(state[0][i], state[1][i]) for i in range(len(state[0]))]
return responses, state
with gr.Blocks() as demo:
state = gr.State([[],[]])
chatbot = gr.Chatbot()
text = gr.Textbox(label="Ask a question (press enter to submit)", default_value="How are you?")
text.submit(get_model_answer, [text, state], [chatbot, state])
text.submit(lambda x: "", text, text)
demo.launch()