Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer | |
import time | |
import gradio as gr | |
from optimum.onnxruntime import ORTModelForSeq2SeqLM | |
from optimum.utils import NormalizedConfigManager | |
def _new_get_normalized_config_class(cls, model_type): | |
return cls._conf["t5"] | |
NormalizedConfigManager.get_normalized_config_class = _new_get_normalized_config_class | |
N = 2 # Number of previous QA pairs to use for context | |
MAX_NEW_TOKENS = 128 # Maximum number of tokens for each answer | |
tokenizer = AutoTokenizer.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx") | |
model = ORTModelForSeq2SeqLM.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa-onnx") | |
with open("context_short.txt", "r") as f: | |
context = f.read() | |
def build_input(question, state=[[],[]]): | |
model_input = f"{context} || " | |
previous = min(len(state[1][1:]), N) | |
for i in range(previous, 0, -1): | |
prev_question = state[0][-i-1] | |
prev_answer = state[1][-i] | |
model_input += f"<Q{i}> {prev_question} <A{i}> {prev_answer} " | |
model_input += f"<Q> {question} <A> " | |
return model_input | |
def get_model_answer(question, state=[[],[]]): | |
start = time.perf_counter() | |
model_input = build_input(question, state) | |
end = time.perf_counter() | |
print(f"Build input: {end-start}") | |
start = time.perf_counter() | |
encoded_inputs = tokenizer(model_input, max_length=3000, truncation=True, return_tensors="pt") | |
input_ids, attention_mask = ( | |
encoded_inputs.input_ids, | |
encoded_inputs.attention_mask | |
) | |
end = time.perf_counter() | |
print(f"Tokenize: {end-start}") | |
start = time.perf_counter() | |
encoded_output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=MAX_NEW_TOKENS) | |
answer = tokenizer.decode(encoded_output[0], skip_special_tokens=True) | |
end = time.perf_counter() | |
print(f"Generate: {end-start}") | |
state[0].append(question) | |
state[1].append(answer) | |
responses = [(state[0][i], state[1][i]) for i in range(len(state[0]))] | |
return responses, state | |
with gr.Blocks() as demo: | |
state = gr.State([[],[]]) | |
chatbot = gr.Chatbot() | |
text = gr.Textbox(label="Ask a question (press enter to submit)", default_value="How are you?") | |
text.submit(get_model_answer, [text, state], [chatbot, state]) | |
text.submit(lambda x: "", text, text) | |
demo.launch() |