Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import Repository
|
@@ -19,8 +20,13 @@ theme = gr.themes.Monochrome(
|
|
19 |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
20 |
)
|
21 |
if HF_TOKEN:
|
|
|
|
|
|
|
|
|
|
|
22 |
repo = Repository(
|
23 |
-
local_dir="data", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
|
24 |
)
|
25 |
repo.git_pull()
|
26 |
|
@@ -39,10 +45,12 @@ def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
|
|
39 |
commit_url = repo.push_to_hub()
|
40 |
|
41 |
|
42 |
-
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100):
|
43 |
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
44 |
|
45 |
temperature = float(temperature)
|
|
|
|
|
46 |
top_p = float(top_p)
|
47 |
|
48 |
generate_kwargs = dict(
|
@@ -65,10 +73,13 @@ def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k
|
|
65 |
for response in stream:
|
66 |
output += response.token.text
|
67 |
yield output
|
68 |
-
if HF_TOKEN:
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
return output
|
73 |
|
74 |
|
@@ -91,15 +102,15 @@ css = ".generating {visibility: hidden}" + share_btn_css
|
|
91 |
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
92 |
with gr.Column():
|
93 |
gr.Markdown(
|
94 |
-
"""
|
95 |
|
96 |
-
StackLLaMa is a 7 billion parameter language model that has been trained on pairs of questions and answers from [Stack Exchange](https://stackexchange.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our [blog post](https://huggingface.co/blog/stackllama).
|
97 |
|
98 |
-
|
99 |
|
100 |
-
|
101 |
"""
|
102 |
)
|
|
|
103 |
with gr.Row():
|
104 |
with gr.Column(scale=3):
|
105 |
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
|
@@ -122,8 +133,8 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
|
122 |
with gr.Column(scale=1):
|
123 |
temperature = gr.Slider(
|
124 |
label="Temperature",
|
125 |
-
value=0.
|
126 |
-
minimum=0.
|
127 |
maximum=2.0,
|
128 |
step=0.1,
|
129 |
interactive=True,
|
@@ -131,16 +142,16 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
|
131 |
)
|
132 |
max_new_tokens = gr.Slider(
|
133 |
label="Max new tokens",
|
134 |
-
value=
|
135 |
minimum=0,
|
136 |
-
maximum=
|
137 |
step=4,
|
138 |
interactive=True,
|
139 |
info="The maximum numbers of new tokens",
|
140 |
)
|
141 |
top_p = gr.Slider(
|
142 |
label="Top-p (nucleus sampling)",
|
143 |
-
value=0.
|
144 |
minimum=0.0,
|
145 |
maximum=1,
|
146 |
step=0.05,
|
@@ -149,7 +160,7 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
|
149 |
)
|
150 |
top_k = gr.Slider(
|
151 |
label="Top-k",
|
152 |
-
value=
|
153 |
minimum=0,
|
154 |
maximum=100,
|
155 |
step=2,
|
@@ -157,8 +168,8 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
|
157 |
info="Sample from top-k tokens",
|
158 |
)
|
159 |
|
160 |
-
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
|
161 |
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
|
162 |
share_button.click(None, [], [], _js=share_js)
|
163 |
|
164 |
-
demo.queue(concurrency_count=16).launch(debug=True)
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import shutil
|
4 |
|
5 |
import gradio as gr
|
6 |
from huggingface_hub import Repository
|
|
|
20 |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
21 |
)
|
22 |
if HF_TOKEN:
|
23 |
+
try:
|
24 |
+
shutil.rmtree("./data/")
|
25 |
+
except:
|
26 |
+
pass
|
27 |
+
|
28 |
repo = Repository(
|
29 |
+
local_dir="./data/", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
|
30 |
)
|
31 |
repo.git_pull()
|
32 |
|
|
|
45 |
commit_url = repo.push_to_hub()
|
46 |
|
47 |
|
48 |
+
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100, do_save=True):
|
49 |
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
50 |
|
51 |
temperature = float(temperature)
|
52 |
+
if temperature < 1e-2:
|
53 |
+
temperature = 1e-2
|
54 |
top_p = float(top_p)
|
55 |
|
56 |
generate_kwargs = dict(
|
|
|
73 |
for response in stream:
|
74 |
output += response.token.text
|
75 |
yield output
|
76 |
+
if HF_TOKEN and do_save:
|
77 |
+
try:
|
78 |
+
print("Pushing prompt and completion to the Hub")
|
79 |
+
save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
|
80 |
+
except Exception,e:
|
81 |
+
print(e)
|
82 |
+
|
83 |
return output
|
84 |
|
85 |
|
|
|
102 |
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
|
103 |
with gr.Column():
|
104 |
gr.Markdown(
|
105 |
+
"""![](https://huggingface.co/spaces/trl-lib/stack-llama/resolve/main/stackllama_logo.png)
|
106 |
|
|
|
107 |
|
108 |
+
StackLLaMa is a 7 billion parameter language model that has been trained on pairs of questions and answers from [Stack Exchange](https://stackexchange.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our [blog post](https://huggingface.co/blog/stackllama).
|
109 |
|
110 |
+
Type in the box below and click the button to generate answers to your most pressing questions!
|
111 |
"""
|
112 |
)
|
113 |
+
do_save = gr.Checkbox(value=True, label="You consent to the storage of your prompt and generated text for research and development purposes.")
|
114 |
with gr.Row():
|
115 |
with gr.Column(scale=3):
|
116 |
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
|
|
|
133 |
with gr.Column(scale=1):
|
134 |
temperature = gr.Slider(
|
135 |
label="Temperature",
|
136 |
+
value=0.9,
|
137 |
+
minimum=0.0,
|
138 |
maximum=2.0,
|
139 |
step=0.1,
|
140 |
interactive=True,
|
|
|
142 |
)
|
143 |
max_new_tokens = gr.Slider(
|
144 |
label="Max new tokens",
|
145 |
+
value=128,
|
146 |
minimum=0,
|
147 |
+
maximum=512,
|
148 |
step=4,
|
149 |
interactive=True,
|
150 |
info="The maximum numbers of new tokens",
|
151 |
)
|
152 |
top_p = gr.Slider(
|
153 |
label="Top-p (nucleus sampling)",
|
154 |
+
value=0.90,
|
155 |
minimum=0.0,
|
156 |
maximum=1,
|
157 |
step=0.05,
|
|
|
160 |
)
|
161 |
top_k = gr.Slider(
|
162 |
label="Top-k",
|
163 |
+
value=50,
|
164 |
minimum=0,
|
165 |
maximum=100,
|
166 |
step=2,
|
|
|
168 |
info="Sample from top-k tokens",
|
169 |
)
|
170 |
|
171 |
+
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k, do_save], outputs=[output])
|
172 |
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
|
173 |
share_button.click(None, [], [], _js=share_js)
|
174 |
|
175 |
+
demo.queue(concurrency_count=16).launch(debug=True)
|