Spaces:
Runtime error
Runtime error
File size: 7,350 Bytes
5d26322 a9e7d31 5d26322 a9e7d31 5d26322 a9e7d31 5d26322 a9e7d31 af91d1e a9e7d31 1d89618 a9e7d31 1d89618 a9e7d31 6e3d5eb a9e7d31 5d26322 a9e7d31 5d26322 a9e7d31 5d26322 a9e7d31 5d26322 a9e7d31 5d26322 a9e7d31 6e3d5eb a9e7d31 5d26322 a9e7d31 6e3d5eb a9e7d31 6e3d5eb a9e7d31 6e3d5eb a9e7d31 6e3d5eb a9e7d31 6e3d5eb a9e7d31 6e3d5eb a9e7d31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import json
import os
from threading import Thread
import gradio as gr
import torch
from huggingface_hub import Repository
from transformers import (AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, TextIteratorStreamer)
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
# filesystem to save input and outputs
HF_TOKEN = os.environ.get("HF_TOKEN", None)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# if HF_TOKEN:
# repo = Repository(
# local_dir="data", clone_from="philschmid/playground-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
# )
# Load peft config for pre-trained checkpoint etc.
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "HuggingFaceH4/llama-se-rl-ed"
if device == "cpu":
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, use_auth_token=HF_TOKEN)
else:
# torch_dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
# model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, device_map="auto")
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="auto", load_in_8bit=True, use_auth_token=HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN)
PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer: """
def generate(instruction, temperature, max_new_tokens, top_p, length_penalty):
formatted_instruction = PROMPT_TEMPLATE.format(input=instruction)
# COMMENT IN FOR NON STREAMING
# generation_config = GenerationConfig(
# do_sample=True,
# top_p=top_p,
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# early_stopping=True,
# length_penalty=length_penalty,
# eos_token_id=tokenizer.eos_token_id,
# pad_token_id=tokenizer.pad_token_id,
# )
# input_ids = tokenizer(
# formatted_instruction, return_tensors="pt", truncation=True, max_length=2048
# ).input_ids.cuda()
# with torch.inference_mode(), torch.autocast("cuda"):
# outputs = model.generate(input_ids=input_ids, generation_config=generation_config)[0]
# output = tokenizer.decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)
# return output.split("### Antwort:\n")[1]
# STREAMING BASED ON git+https://github.com/gante/transformers.git@streamer_iterator
# streaming
streamer = TextIteratorStreamer(tokenizer)
model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
generate_kwargs = dict(
top_p=top_p,
temperature=temperature,
max_new_tokens=max_new_tokens,
early_stopping=True,
length_penalty=length_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
t.start()
output = ""
hidden_output = ""
for new_text in streamer:
# skip streaming until new text is available
if len(hidden_output) <= len(formatted_instruction):
hidden_output += new_text
continue
# replace eos token
if tokenizer.eos_token in new_text:
new_text = new_text.replace(tokenizer.eos_token, "")
output += new_text
yield output
# if HF_TOKEN:
# save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
return output
# def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
# with open(os.path.join("data", "prompts.jsonl"), "a") as f:
# json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
# f.write("\n")
# commit_url = repo.push_to_hub()
examples = [
"How do I create an array in C++ of length 5 which contains all even numbers between 1 and 10?",
"How can I write a Java function to generate the nth Fibonacci number?",
"How can I write a Python function that checks if a given number is a palindrome or not?",
"What is the output of the following code?\n\n```\nlist1 = ['a', 'b', 'c']\nlist2 = [1, 2, 3]\n\nfor x, y in zip(list1, list2):\n print(x * y)\n```",
]
with gr.Blocks(theme=theme) as demo:
with gr.Column():
gr.Markdown(
"""<h1><center>🦙🦙🦙 StackLLaMa 🦙🦙🦙</center></h1>
StackLLaMa is a 7 billion parameter language model that has been trained on pairs of programming questions and answers from [Stack Overflow](https://stackoverflow.com) using Reinforcement Learning from Human Feedback (RLHF) with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our blog post [ADD LINK].
Type in the box below and click the button to generate answers to your most pressing coding questions 🔥!
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question")
output = gr.Textbox(
interactive=False,
lines=8,
label="Answer",
placeholder="Here will be the answer to your question",
)
submit = gr.Button("Generate", variant="primary")
gr.Examples(examples=examples, inputs=[instruction])
with gr.Column(scale=1):
temperature = gr.Slider(
label="Temperature",
value=1.0,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=2048,
step=5,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.9,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample fewer low-probability tokens",
)
length_penalty = gr.Slider(
label="Length penalty",
value=1.0,
minimum=-10.0,
maximum=10.0,
step=0.1,
interactive=True,
info="> 0 longer, < 0 shorter",
)
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, length_penalty], outputs=[output])
instruction.submit(
generate, inputs=[instruction, temperature, max_new_tokens, top_p, length_penalty], outputs=[output]
)
demo.queue()
demo.launch()
|