Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Utility that checks the list of models in the tips in the task-specific pages of the doc is up to date and potentially | |
fixes it. | |
Use from the root of the repo with: | |
```bash | |
python utils/check_task_guides.py | |
``` | |
for a check that will error in case of inconsistencies (used by `make repo-consistency`). | |
To auto-fix issues run: | |
```bash | |
python utils/check_task_guides.py --fix_and_overwrite | |
``` | |
which is used by `make fix-copies`. | |
""" | |
import argparse | |
import os | |
from transformers.utils import direct_transformers_import | |
# All paths are set with the intent you should run this script from the root of the repo with the command | |
# python utils/check_task_guides.py | |
TRANSFORMERS_PATH = "src/transformers" | |
PATH_TO_TASK_GUIDES = "docs/source/en/tasks" | |
def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str: | |
""" | |
Find the text in filename between two prompts. | |
Args: | |
filename (`str`): The file to search into. | |
start_prompt (`str`): A string to look for at the start of the content searched. | |
end_prompt (`str`): A string that will mark the end of the content to look for. | |
Returns: | |
`str`: The content between the prompts. | |
""" | |
with open(filename, "r", encoding="utf-8", newline="\n") as f: | |
lines = f.readlines() | |
# Find the start prompt. | |
start_index = 0 | |
while not lines[start_index].startswith(start_prompt): | |
start_index += 1 | |
start_index += 1 | |
# Now go until the end prompt. | |
end_index = start_index | |
while not lines[end_index].startswith(end_prompt): | |
end_index += 1 | |
end_index -= 1 | |
while len(lines[start_index]) <= 1: | |
start_index += 1 | |
while len(lines[end_index]) <= 1: | |
end_index -= 1 | |
end_index += 1 | |
return "".join(lines[start_index:end_index]), start_index, end_index, lines | |
# This is to make sure the transformers module imported is the one in the repo. | |
transformers_module = direct_transformers_import(TRANSFORMERS_PATH) | |
# Map between a task guide and the corresponding auto class. | |
TASK_GUIDE_TO_MODELS = { | |
"asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, | |
"audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, | |
"language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, | |
"image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, | |
"masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, | |
"multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, | |
"object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, | |
"question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, | |
"semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, | |
"sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, | |
"summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, | |
"token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, | |
"translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, | |
"video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, | |
"document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, | |
"monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, | |
} | |
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any | |
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). | |
SPECIAL_TASK_GUIDE_TO_MODEL_TYPES = { | |
"summarization.md": ("nllb",), | |
"translation.md": ("nllb",), | |
} | |
def get_model_list_for_task(task_guide: str) -> str: | |
""" | |
Return the list of models supporting a given task. | |
Args: | |
task_guide (`str`): The name of the task guide to check. | |
Returns: | |
`str`: The list of models supporting this task, as links to their respective doc pages separated by commas. | |
""" | |
model_maping_names = TASK_GUIDE_TO_MODELS[task_guide] | |
special_model_types = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(task_guide, set()) | |
model_names = { | |
code: name | |
for code, name in transformers_module.MODEL_NAMES_MAPPING.items() | |
if (code in model_maping_names or code in special_model_types) | |
} | |
return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()]) + "\n" | |
def check_model_list_for_task(task_guide: str, overwrite: bool = False): | |
""" | |
For a given task guide, checks the model list in the generated tip for consistency with the state of the lib and | |
updates it if needed. | |
Args: | |
task_guide (`str`): | |
The name of the task guide to check. | |
overwrite (`bool`, *optional*, defaults to `False`): | |
Whether or not to overwrite the table when it's not up to date. | |
""" | |
current_list, start_index, end_index, lines = _find_text_in_file( | |
filename=os.path.join(PATH_TO_TASK_GUIDES, task_guide), | |
start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->", | |
end_prompt="<!--End of the generated tip-->", | |
) | |
new_list = get_model_list_for_task(task_guide) | |
if current_list != new_list: | |
if overwrite: | |
with open(os.path.join(PATH_TO_TASK_GUIDES, task_guide), "w", encoding="utf-8", newline="\n") as f: | |
f.writelines(lines[:start_index] + [new_list] + lines[end_index:]) | |
else: | |
raise ValueError( | |
f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" | |
" to fix this." | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") | |
args = parser.parse_args() | |
for task_guide in TASK_GUIDE_TO_MODELS.keys(): | |
check_model_list_for_task(task_guide, args.fix_and_overwrite) | |