Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import sys | |
import tempfile | |
import unittest | |
from pathlib import Path | |
from shutil import copyfile | |
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo | |
from requests.exceptions import HTTPError | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
FEATURE_EXTRACTOR_MAPPING, | |
PROCESSOR_MAPPING, | |
TOKENIZER_MAPPING, | |
AutoConfig, | |
AutoFeatureExtractor, | |
AutoProcessor, | |
AutoTokenizer, | |
BertTokenizer, | |
ProcessorMixin, | |
Wav2Vec2Config, | |
Wav2Vec2FeatureExtractor, | |
Wav2Vec2Processor, | |
) | |
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test | |
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE | |
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available | |
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) | |
from test_module.custom_configuration import CustomConfig # noqa E402 | |
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 | |
from test_module.custom_processing import CustomProcessor # noqa E402 | |
from test_module.custom_tokenization import CustomTokenizer # noqa E402 | |
SAMPLE_PROCESSOR_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json") | |
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json") | |
SAMPLE_PROCESSOR_CONFIG_DIR = get_tests_dir("fixtures") | |
class AutoFeatureExtractorTest(unittest.TestCase): | |
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] | |
def setUp(self): | |
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 | |
def test_processor_from_model_shortcut(self): | |
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") | |
self.assertIsInstance(processor, Wav2Vec2Processor) | |
def test_processor_from_local_directory_from_repo(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model_config = Wav2Vec2Config() | |
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") | |
# save in new folder | |
model_config.save_pretrained(tmpdirname) | |
processor.save_pretrained(tmpdirname) | |
processor = AutoProcessor.from_pretrained(tmpdirname) | |
self.assertIsInstance(processor, Wav2Vec2Processor) | |
def test_processor_from_local_directory_from_extractor_config(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# copy relevant files | |
copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME)) | |
copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json")) | |
processor = AutoProcessor.from_pretrained(tmpdirname) | |
self.assertIsInstance(processor, Wav2Vec2Processor) | |
def test_processor_from_feat_extr_processor_class(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
feature_extractor = Wav2Vec2FeatureExtractor() | |
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") | |
processor = Wav2Vec2Processor(feature_extractor, tokenizer) | |
# save in new folder | |
processor.save_pretrained(tmpdirname) | |
# drop `processor_class` in tokenizer | |
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f: | |
config_dict = json.load(f) | |
config_dict.pop("processor_class") | |
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f: | |
f.write(json.dumps(config_dict)) | |
processor = AutoProcessor.from_pretrained(tmpdirname) | |
self.assertIsInstance(processor, Wav2Vec2Processor) | |
def test_processor_from_tokenizer_processor_class(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
feature_extractor = Wav2Vec2FeatureExtractor() | |
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") | |
processor = Wav2Vec2Processor(feature_extractor, tokenizer) | |
# save in new folder | |
processor.save_pretrained(tmpdirname) | |
# drop `processor_class` in feature extractor | |
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "r") as f: | |
config_dict = json.load(f) | |
config_dict.pop("processor_class") | |
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f: | |
f.write(json.dumps(config_dict)) | |
processor = AutoProcessor.from_pretrained(tmpdirname) | |
self.assertIsInstance(processor, Wav2Vec2Processor) | |
def test_processor_from_local_directory_from_model_config(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor") | |
model_config.save_pretrained(tmpdirname) | |
# copy relevant files | |
copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json")) | |
# create emtpy sample processor | |
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f: | |
f.write("{}") | |
processor = AutoProcessor.from_pretrained(tmpdirname) | |
self.assertIsInstance(processor, Wav2Vec2Processor) | |
def test_from_pretrained_dynamic_processor(self): | |
# If remote code is not set, we will time out when asking whether to load the model. | |
with self.assertRaises(ValueError): | |
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor") | |
# If remote code is disabled, we can't load this config. | |
with self.assertRaises(ValueError): | |
processor = AutoProcessor.from_pretrained( | |
"hf-internal-testing/test_dynamic_processor", trust_remote_code=False | |
) | |
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor", trust_remote_code=True) | |
self.assertTrue(processor.special_attribute_present) | |
self.assertEqual(processor.__class__.__name__, "NewProcessor") | |
feature_extractor = processor.feature_extractor | |
self.assertTrue(feature_extractor.special_attribute_present) | |
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
tokenizer = processor.tokenizer | |
self.assertTrue(tokenizer.special_attribute_present) | |
if is_tokenizers_available(): | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") | |
# Test we can also load the slow version | |
new_processor = AutoProcessor.from_pretrained( | |
"hf-internal-testing/test_dynamic_processor", trust_remote_code=True, use_fast=False | |
) | |
new_tokenizer = new_processor.tokenizer | |
self.assertTrue(new_tokenizer.special_attribute_present) | |
self.assertEqual(new_tokenizer.__class__.__name__, "NewTokenizer") | |
else: | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") | |
def test_new_processor_registration(self): | |
try: | |
AutoConfig.register("custom", CustomConfig) | |
AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor) | |
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) | |
AutoProcessor.register(CustomConfig, CustomProcessor) | |
# Trying to register something existing in the Transformers library will raise an error | |
with self.assertRaises(ValueError): | |
AutoProcessor.register(Wav2Vec2Config, Wav2Vec2Processor) | |
# Now that the config is registered, it can be used as any other config with the auto-API | |
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
vocab_file = os.path.join(tmp_dir, "vocab.txt") | |
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: | |
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) | |
tokenizer = CustomTokenizer(vocab_file) | |
processor = CustomProcessor(feature_extractor, tokenizer) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
processor.save_pretrained(tmp_dir) | |
new_processor = AutoProcessor.from_pretrained(tmp_dir) | |
self.assertIsInstance(new_processor, CustomProcessor) | |
finally: | |
if "custom" in CONFIG_MAPPING._extra_content: | |
del CONFIG_MAPPING._extra_content["custom"] | |
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: | |
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] | |
if CustomConfig in TOKENIZER_MAPPING._extra_content: | |
del TOKENIZER_MAPPING._extra_content[CustomConfig] | |
if CustomConfig in PROCESSOR_MAPPING._extra_content: | |
del PROCESSOR_MAPPING._extra_content[CustomConfig] | |
def test_from_pretrained_dynamic_processor_conflict(self): | |
class NewFeatureExtractor(Wav2Vec2FeatureExtractor): | |
special_attribute_present = False | |
class NewTokenizer(BertTokenizer): | |
special_attribute_present = False | |
class NewProcessor(ProcessorMixin): | |
feature_extractor_class = "AutoFeatureExtractor" | |
tokenizer_class = "AutoTokenizer" | |
special_attribute_present = False | |
try: | |
AutoConfig.register("custom", CustomConfig) | |
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor) | |
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer) | |
AutoProcessor.register(CustomConfig, NewProcessor) | |
# If remote code is not set, the default is to use local classes. | |
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor") | |
self.assertEqual(processor.__class__.__name__, "NewProcessor") | |
self.assertFalse(processor.special_attribute_present) | |
self.assertFalse(processor.feature_extractor.special_attribute_present) | |
self.assertFalse(processor.tokenizer.special_attribute_present) | |
# If remote code is disabled, we load the local ones. | |
processor = AutoProcessor.from_pretrained( | |
"hf-internal-testing/test_dynamic_processor", trust_remote_code=False | |
) | |
self.assertEqual(processor.__class__.__name__, "NewProcessor") | |
self.assertFalse(processor.special_attribute_present) | |
self.assertFalse(processor.feature_extractor.special_attribute_present) | |
self.assertFalse(processor.tokenizer.special_attribute_present) | |
# If remote is enabled, we load from the Hub. | |
processor = AutoProcessor.from_pretrained( | |
"hf-internal-testing/test_dynamic_processor", trust_remote_code=True | |
) | |
self.assertEqual(processor.__class__.__name__, "NewProcessor") | |
self.assertTrue(processor.special_attribute_present) | |
self.assertTrue(processor.feature_extractor.special_attribute_present) | |
self.assertTrue(processor.tokenizer.special_attribute_present) | |
finally: | |
if "custom" in CONFIG_MAPPING._extra_content: | |
del CONFIG_MAPPING._extra_content["custom"] | |
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: | |
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] | |
if CustomConfig in TOKENIZER_MAPPING._extra_content: | |
del TOKENIZER_MAPPING._extra_content[CustomConfig] | |
if CustomConfig in PROCESSOR_MAPPING._extra_content: | |
del PROCESSOR_MAPPING._extra_content[CustomConfig] | |
def test_auto_processor_creates_tokenizer(self): | |
processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert") | |
self.assertEqual(processor.__class__.__name__, "BertTokenizerFast") | |
def test_auto_processor_creates_image_processor(self): | |
processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext") | |
self.assertEqual(processor.__class__.__name__, "ConvNextImageProcessor") | |
class ProcessorPushToHubTester(unittest.TestCase): | |
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] | |
def setUpClass(cls): | |
cls._token = TOKEN | |
HfFolder.save_token(TOKEN) | |
def tearDownClass(cls): | |
try: | |
delete_repo(token=cls._token, repo_id="test-processor") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="valid_org/test-processor-org") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="test-dynamic-processor") | |
except HTTPError: | |
pass | |
def test_push_to_hub(self): | |
processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
processor.save_pretrained( | |
os.path.join(tmp_dir, "test-processor"), push_to_hub=True, use_auth_token=self._token | |
) | |
new_processor = Wav2Vec2Processor.from_pretrained(f"{USER}/test-processor") | |
for k, v in processor.feature_extractor.__dict__.items(): | |
self.assertEqual(v, getattr(new_processor.feature_extractor, k)) | |
self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab()) | |
def test_push_to_hub_in_organization(self): | |
processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
processor.save_pretrained( | |
os.path.join(tmp_dir, "test-processor-org"), | |
push_to_hub=True, | |
use_auth_token=self._token, | |
organization="valid_org", | |
) | |
new_processor = Wav2Vec2Processor.from_pretrained("valid_org/test-processor-org") | |
for k, v in processor.feature_extractor.__dict__.items(): | |
self.assertEqual(v, getattr(new_processor.feature_extractor, k)) | |
self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab()) | |
def test_push_to_hub_dynamic_processor(self): | |
CustomFeatureExtractor.register_for_auto_class() | |
CustomTokenizer.register_for_auto_class() | |
CustomProcessor.register_for_auto_class() | |
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
vocab_file = os.path.join(tmp_dir, "vocab.txt") | |
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: | |
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) | |
tokenizer = CustomTokenizer(vocab_file) | |
processor = CustomProcessor(feature_extractor, tokenizer) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
create_repo(f"{USER}/test-dynamic-processor", token=self._token) | |
repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-processor", token=self._token) | |
processor.save_pretrained(tmp_dir) | |
# This has added the proper auto_map field to the feature extractor config | |
self.assertDictEqual( | |
processor.feature_extractor.auto_map, | |
{ | |
"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", | |
"AutoProcessor": "custom_processing.CustomProcessor", | |
}, | |
) | |
# This has added the proper auto_map field to the tokenizer config | |
with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f: | |
tokenizer_config = json.load(f) | |
self.assertDictEqual( | |
tokenizer_config["auto_map"], | |
{ | |
"AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], | |
"AutoProcessor": "custom_processing.CustomProcessor", | |
}, | |
) | |
# The code has been copied from fixtures | |
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_tokenization.py"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_processing.py"))) | |
repo.push_to_hub() | |
new_processor = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor", trust_remote_code=True) | |
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module | |
self.assertEqual(new_processor.__class__.__name__, "CustomProcessor") | |