Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import copy | |
import tempfile | |
import unittest | |
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, TapasConfig, is_tf_available | |
from transformers.testing_utils import ( | |
DUMMY_UNKNOWN_IDENTIFIER, | |
SMALL_MODEL_IDENTIFIER, | |
RequestCounter, | |
require_tensorflow_probability, | |
require_tf, | |
slow, | |
) | |
from ..bert.test_modeling_bert import BertModelTester | |
if is_tf_available(): | |
from transformers import ( | |
TFAutoModel, | |
TFAutoModelForCausalLM, | |
TFAutoModelForMaskedLM, | |
TFAutoModelForPreTraining, | |
TFAutoModelForQuestionAnswering, | |
TFAutoModelForSeq2SeqLM, | |
TFAutoModelForSequenceClassification, | |
TFAutoModelForTableQuestionAnswering, | |
TFAutoModelForTokenClassification, | |
TFAutoModelWithLMHead, | |
TFBertForMaskedLM, | |
TFBertForPreTraining, | |
TFBertForQuestionAnswering, | |
TFBertForSequenceClassification, | |
TFBertModel, | |
TFFunnelBaseModel, | |
TFFunnelModel, | |
TFGPT2LMHeadModel, | |
TFRobertaForMaskedLM, | |
TFT5ForConditionalGeneration, | |
TFTapasForQuestionAnswering, | |
) | |
from transformers.models.auto.modeling_tf_auto import ( | |
TF_MODEL_FOR_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_MASKED_LM_MAPPING, | |
TF_MODEL_FOR_PRETRAINING_MAPPING, | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
TF_MODEL_MAPPING, | |
) | |
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST | |
from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST | |
from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST | |
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST | |
class NewModelConfig(BertConfig): | |
model_type = "new-model" | |
if is_tf_available(): | |
class TFNewModel(TFBertModel): | |
config_class = NewModelConfig | |
class TFAutoModelTest(unittest.TestCase): | |
def test_model_from_pretrained(self): | |
model_name = "bert-base-cased" | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertModel) | |
def test_model_for_pretraining_from_pretrained(self): | |
model_name = "bert-base-cased" | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelForPreTraining.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForPreTraining) | |
def test_model_for_causal_lm(self): | |
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, GPT2Config) | |
model = TFAutoModelForCausalLM.from_pretrained(model_name) | |
model, loading_info = TFAutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFGPT2LMHeadModel) | |
def test_lmhead_model_from_pretrained(self): | |
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelWithLMHead.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForMaskedLM) | |
def test_model_for_masked_lm(self): | |
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelForMaskedLM.from_pretrained(model_name) | |
model, loading_info = TFAutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForMaskedLM) | |
def test_model_for_encoder_decoder_lm(self): | |
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, T5Config) | |
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name) | |
model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFT5ForConditionalGeneration) | |
def test_sequence_classification_model_from_pretrained(self): | |
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
for model_name in ["bert-base-uncased"]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForSequenceClassification) | |
def test_question_answering_model_from_pretrained(self): | |
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
for model_name in ["bert-base-uncased"]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, BertConfig) | |
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFBertForQuestionAnswering) | |
def test_table_question_answering_model_from_pretrained(self): | |
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: | |
config = AutoConfig.from_pretrained(model_name) | |
self.assertIsNotNone(config) | |
self.assertIsInstance(config, TapasConfig) | |
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_name) | |
model, loading_info = TFAutoModelForTableQuestionAnswering.from_pretrained( | |
model_name, output_loading_info=True | |
) | |
self.assertIsNotNone(model) | |
self.assertIsInstance(model, TFTapasForQuestionAnswering) | |
def test_from_pretrained_identifier(self): | |
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
self.assertIsInstance(model, TFBertForMaskedLM) | |
self.assertEqual(model.num_parameters(), 14410) | |
self.assertEqual(model.num_parameters(only_trainable=True), 14410) | |
def test_from_identifier_from_model_type(self): | |
model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) | |
self.assertIsInstance(model, TFRobertaForMaskedLM) | |
self.assertEqual(model.num_parameters(), 14410) | |
self.assertEqual(model.num_parameters(only_trainable=True), 14410) | |
def test_from_pretrained_with_tuple_values(self): | |
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel | |
model = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny") | |
self.assertIsInstance(model, TFFunnelModel) | |
config = copy.deepcopy(model.config) | |
config.architectures = ["FunnelBaseModel"] | |
model = TFAutoModel.from_config(config) | |
self.assertIsInstance(model, TFFunnelBaseModel) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir) | |
model = TFAutoModel.from_pretrained(tmp_dir) | |
self.assertIsInstance(model, TFFunnelBaseModel) | |
def test_new_model_registration(self): | |
try: | |
AutoConfig.register("new-model", NewModelConfig) | |
auto_classes = [ | |
TFAutoModel, | |
TFAutoModelForCausalLM, | |
TFAutoModelForMaskedLM, | |
TFAutoModelForPreTraining, | |
TFAutoModelForQuestionAnswering, | |
TFAutoModelForSequenceClassification, | |
TFAutoModelForTokenClassification, | |
] | |
for auto_class in auto_classes: | |
with self.subTest(auto_class.__name__): | |
# Wrong config class will raise an error | |
with self.assertRaises(ValueError): | |
auto_class.register(BertConfig, TFNewModel) | |
auto_class.register(NewModelConfig, TFNewModel) | |
# Trying to register something existing in the Transformers library will raise an error | |
with self.assertRaises(ValueError): | |
auto_class.register(BertConfig, TFBertModel) | |
# Now that the config is registered, it can be used as any other config with the auto-API | |
tiny_config = BertModelTester(self).get_config() | |
config = NewModelConfig(**tiny_config.to_dict()) | |
model = auto_class.from_config(config) | |
self.assertIsInstance(model, TFNewModel) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir) | |
new_model = auto_class.from_pretrained(tmp_dir) | |
self.assertIsInstance(new_model, TFNewModel) | |
finally: | |
if "new-model" in CONFIG_MAPPING._extra_content: | |
del CONFIG_MAPPING._extra_content["new-model"] | |
for mapping in ( | |
TF_MODEL_MAPPING, | |
TF_MODEL_FOR_PRETRAINING_MAPPING, | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_MASKED_LM_MAPPING, | |
): | |
if NewModelConfig in mapping._extra_content: | |
del mapping._extra_content[NewModelConfig] | |
def test_repo_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" | |
): | |
_ = TFAutoModel.from_pretrained("bert-base") | |
def test_revision_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" | |
): | |
_ = TFAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") | |
def test_model_file_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, | |
"hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", | |
): | |
_ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model") | |
def test_model_from_pt_suggestion(self): | |
with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"): | |
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") | |
def test_cached_model_has_minimum_calls_to_head(self): | |
# Make sure we have cached the model. | |
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
with RequestCounter() as counter: | |
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
self.assertEqual(counter.get_request_count, 0) | |
self.assertEqual(counter.head_request_count, 1) | |
self.assertEqual(counter.other_request_count, 0) | |
# With a sharded checkpoint | |
_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") | |
with RequestCounter() as counter: | |
_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") | |
self.assertEqual(counter.get_request_count, 0) | |
self.assertEqual(counter.head_request_count, 1) | |
self.assertEqual(counter.other_request_count, 0) | |