Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import sys | |
import tempfile | |
import unittest | |
from pathlib import Path | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
FEATURE_EXTRACTOR_MAPPING, | |
AutoConfig, | |
AutoFeatureExtractor, | |
Wav2Vec2Config, | |
Wav2Vec2FeatureExtractor, | |
) | |
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir | |
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) | |
from test_module.custom_configuration import CustomConfig # noqa E402 | |
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 | |
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures") | |
SAMPLE_FEATURE_EXTRACTION_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json") | |
SAMPLE_CONFIG = get_tests_dir("fixtures/dummy-config.json") | |
class AutoFeatureExtractorTest(unittest.TestCase): | |
def setUp(self): | |
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 | |
def test_feature_extractor_from_model_shortcut(self): | |
config = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") | |
self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
def test_feature_extractor_from_local_directory_from_key(self): | |
config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) | |
self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
def test_feature_extractor_from_local_directory_from_config(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model_config = Wav2Vec2Config() | |
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally | |
config_dict = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR).to_dict() | |
config_dict.pop("feature_extractor_type") | |
config = Wav2Vec2FeatureExtractor(**config_dict) | |
# save in new folder | |
model_config.save_pretrained(tmpdirname) | |
config.save_pretrained(tmpdirname) | |
config = AutoFeatureExtractor.from_pretrained(tmpdirname) | |
# make sure private variable is not incorrectly saved | |
dict_as_saved = json.loads(config.to_json_string()) | |
self.assertTrue("_processor_class" not in dict_as_saved) | |
self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
def test_feature_extractor_from_local_file(self): | |
config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG) | |
self.assertIsInstance(config, Wav2Vec2FeatureExtractor) | |
def test_repo_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" | |
): | |
_ = AutoFeatureExtractor.from_pretrained("bert-base") | |
def test_revision_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" | |
): | |
_ = AutoFeatureExtractor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") | |
def test_feature_extractor_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, | |
"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", | |
): | |
_ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model") | |
def test_from_pretrained_dynamic_feature_extractor(self): | |
# If remote code is not set, we will time out when asking whether to load the model. | |
with self.assertRaises(ValueError): | |
feature_extractor = AutoFeatureExtractor.from_pretrained( | |
"hf-internal-testing/test_dynamic_feature_extractor" | |
) | |
# If remote code is disabled, we can't load this config. | |
with self.assertRaises(ValueError): | |
feature_extractor = AutoFeatureExtractor.from_pretrained( | |
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False | |
) | |
feature_extractor = AutoFeatureExtractor.from_pretrained( | |
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True | |
) | |
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
# Test feature extractor can be reloaded. | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
feature_extractor.save_pretrained(tmp_dir) | |
reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir, trust_remote_code=True) | |
self.assertEqual(reloaded_feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
def test_new_feature_extractor_registration(self): | |
try: | |
AutoConfig.register("custom", CustomConfig) | |
AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor) | |
# Trying to register something existing in the Transformers library will raise an error | |
with self.assertRaises(ValueError): | |
AutoFeatureExtractor.register(Wav2Vec2Config, Wav2Vec2FeatureExtractor) | |
# Now that the config is registered, it can be used as any other config with the auto-API | |
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
feature_extractor.save_pretrained(tmp_dir) | |
new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir) | |
self.assertIsInstance(new_feature_extractor, CustomFeatureExtractor) | |
finally: | |
if "custom" in CONFIG_MAPPING._extra_content: | |
del CONFIG_MAPPING._extra_content["custom"] | |
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: | |
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] | |
def test_from_pretrained_dynamic_feature_extractor_conflict(self): | |
class NewFeatureExtractor(Wav2Vec2FeatureExtractor): | |
is_local = True | |
try: | |
AutoConfig.register("custom", CustomConfig) | |
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor) | |
# If remote code is not set, the default is to use local | |
feature_extractor = AutoFeatureExtractor.from_pretrained( | |
"hf-internal-testing/test_dynamic_feature_extractor" | |
) | |
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
self.assertTrue(feature_extractor.is_local) | |
# If remote code is disabled, we load the local one. | |
feature_extractor = AutoFeatureExtractor.from_pretrained( | |
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False | |
) | |
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
self.assertTrue(feature_extractor.is_local) | |
# If remote is enabled, we load from the Hub | |
feature_extractor = AutoFeatureExtractor.from_pretrained( | |
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True | |
) | |
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") | |
self.assertTrue(not hasattr(feature_extractor, "is_local")) | |
finally: | |
if "custom" in CONFIG_MAPPING._extra_content: | |
del CONFIG_MAPPING._extra_content["custom"] | |
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: | |
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] | |