Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Fine-tuning the library models for sequence classification.""" | |
# You can also adapt this script on your own text classification task. Pointers for this are left as comments. | |
import json | |
import logging | |
import os | |
import sys | |
import warnings | |
from dataclasses import dataclass, field | |
from pathlib import Path | |
from typing import Optional | |
import numpy as np | |
from datasets import load_dataset | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
HfArgumentParser, | |
PretrainedConfig, | |
PushToHubCallback, | |
TFAutoModelForSequenceClassification, | |
TFTrainingArguments, | |
create_optimizer, | |
set_seed, | |
) | |
from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, send_example_telemetry | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" # Reduce the amount of console output from TF | |
import tensorflow as tf # noqa: E402 | |
logger = logging.getLogger(__name__) | |
# region Helper classes | |
class SavePretrainedCallback(tf.keras.callbacks.Callback): | |
# Hugging Face models have a save_pretrained() method that saves both the weights and the necessary | |
# metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback | |
# that saves the model with this method after each epoch. | |
def __init__(self, output_dir, **kwargs): | |
super().__init__() | |
self.output_dir = output_dir | |
def on_epoch_end(self, epoch, logs=None): | |
self.model.save_pretrained(self.output_dir) | |
# endregion | |
# region Command-line arguments | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class | |
into argparse arguments to be able to specify them on | |
the command line. | |
""" | |
train_file: Optional[str] = field( | |
default=None, metadata={"help": "A csv or a json file containing the training data."} | |
) | |
validation_file: Optional[str] = field( | |
default=None, metadata={"help": "A csv or a json file containing the validation data."} | |
) | |
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) | |
max_seq_length: int = field( | |
default=128, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to `max_seq_length`. " | |
"If False, will pad the samples dynamically when batching to the maximum length in the batch." | |
"Data will always be padded when using TPUs." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_val_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of validation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_test_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of test examples to this " | |
"value if set." | |
) | |
}, | |
) | |
def __post_init__(self): | |
train_extension = self.train_file.split(".")[-1].lower() if self.train_file is not None else None | |
validation_extension = ( | |
self.validation_file.split(".")[-1].lower() if self.validation_file is not None else None | |
) | |
test_extension = self.test_file.split(".")[-1].lower() if self.test_file is not None else None | |
extensions = {train_extension, validation_extension, test_extension} | |
extensions.discard(None) | |
assert len(extensions) != 0, "Need to supply at least one of --train_file, --validation_file or --test_file!" | |
assert len(extensions) == 1, "All input files should have the same file extension, either csv or json!" | |
assert "csv" in extensions or "json" in extensions, "Input files should have either .csv or .json extensions!" | |
self.input_file_extension = extensions.pop() | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
token: str = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
) | |
}, | |
) | |
use_auth_token: bool = field( | |
default=None, | |
metadata={ | |
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
}, | |
) | |
trust_remote_code: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
"should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
"execute code present on the Hub on your local machine." | |
) | |
}, | |
) | |
# endregion | |
def main(): | |
# region Argument parsing | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if model_args.use_auth_token is not None: | |
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
if model_args.token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
model_args.token = model_args.use_auth_token | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_text_classification", model_args, data_args, framework="tensorflow") | |
output_dir = Path(training_args.output_dir) | |
output_dir.mkdir(parents=True, exist_ok=True) | |
# endregion | |
# region Checkpoints | |
# Detecting last checkpoint. | |
checkpoint = None | |
if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: | |
if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file(): | |
checkpoint = output_dir | |
logger.info( | |
f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" | |
" behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
else: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to continue regardless." | |
) | |
# endregion | |
# region Logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger.setLevel(logging.INFO) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# endregion | |
# region Loading data | |
# For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally | |
# 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two | |
# columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than | |
# a single grammatical sentence, when the task requires it. | |
# | |
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this | |
# single column. You can easily tweak this behavior (see below) | |
# | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file} | |
data_files = {key: file for key, file in data_files.items() if file is not None} | |
for key in data_files.keys(): | |
logger.info(f"Loading a local file for {key}: {data_files[key]}") | |
if data_args.input_file_extension == "csv": | |
# Loading a dataset from local csv files | |
datasets = load_dataset( | |
"csv", | |
data_files=data_files, | |
cache_dir=model_args.cache_dir, | |
token=model_args.token, | |
) | |
else: | |
# Loading a dataset from local json files | |
datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) | |
# See more about loading any type of standard or custom dataset at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# endregion | |
# region Label preprocessing | |
# If you've passed us a training set, we try to infer your labels from it | |
if "train" in datasets: | |
# By default we assume that if your label column looks like a float then you're doing regression, | |
# and if not then you're doing classification. This is something you may want to change! | |
is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] | |
if is_regression: | |
num_labels = 1 | |
else: | |
# A useful fast method: | |
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique | |
label_list = datasets["train"].unique("label") | |
label_list.sort() # Let's sort it for determinism | |
num_labels = len(label_list) | |
# If you haven't passed a training set, we read label info from the saved model (this happens later) | |
else: | |
num_labels = None | |
label_list = None | |
is_regression = None | |
# endregion | |
# region Load model config and tokenizer | |
if checkpoint is not None: | |
config_path = training_args.output_dir | |
elif model_args.config_name: | |
config_path = model_args.config_name | |
else: | |
config_path = model_args.model_name_or_path | |
if num_labels is not None: | |
config = AutoConfig.from_pretrained( | |
config_path, | |
num_labels=num_labels, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
else: | |
config = AutoConfig.from_pretrained( | |
config_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
# endregion | |
# region Dataset preprocessing | |
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case. | |
column_names = {col for cols in datasets.column_names.values() for col in cols} | |
non_label_column_names = [name for name in column_names if name != "label"] | |
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: | |
sentence1_key, sentence2_key = "sentence1", "sentence2" | |
elif "sentence1" in non_label_column_names: | |
sentence1_key, sentence2_key = "sentence1", None | |
else: | |
if len(non_label_column_names) >= 2: | |
sentence1_key, sentence2_key = non_label_column_names[:2] | |
else: | |
sentence1_key, sentence2_key = non_label_column_names[0], None | |
if data_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
# Ensure that our labels match the model's, if it has some pre-specified | |
if "train" in datasets: | |
if not is_regression and config.label2id != PretrainedConfig(num_labels=num_labels).label2id: | |
label_name_to_id = config.label2id | |
if sorted(label_name_to_id.keys()) == sorted(label_list): | |
label_to_id = label_name_to_id # Use the model's labels | |
else: | |
logger.warning( | |
"Your model seems to have been trained with labels, but they don't match the dataset: ", | |
f"model labels: {sorted(label_name_to_id.keys())}, dataset labels:" | |
f" {sorted(label_list)}.\nIgnoring the model labels as a result.", | |
) | |
label_to_id = {v: i for i, v in enumerate(label_list)} | |
elif not is_regression: | |
label_to_id = {v: i for i, v in enumerate(label_list)} | |
else: | |
label_to_id = None | |
# Now we've established our label2id, let's overwrite the model config with it. | |
config.label2id = label_to_id | |
if config.label2id is not None: | |
config.id2label = {id: label for label, id in label_to_id.items()} | |
else: | |
config.id2label = None | |
else: | |
label_to_id = config.label2id # Just load the data from the model | |
if "validation" in datasets and config.label2id is not None: | |
validation_label_list = datasets["validation"].unique("label") | |
for val_label in validation_label_list: | |
assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!" | |
def preprocess_function(examples): | |
# Tokenize the texts | |
args = ( | |
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) | |
) | |
result = tokenizer(*args, max_length=max_seq_length, truncation=True) | |
# Map labels to IDs | |
if config.label2id is not None and "label" in examples: | |
result["label"] = [(config.label2id[l] if l != -1 else -1) for l in examples["label"]] | |
return result | |
datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) | |
# endregion | |
with training_args.strategy.scope(): | |
# region Load pretrained model | |
# Set seed before initializing model | |
set_seed(training_args.seed) | |
# | |
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
if checkpoint is None: | |
model_path = model_args.model_name_or_path | |
else: | |
model_path = checkpoint | |
model = TFAutoModelForSequenceClassification.from_pretrained( | |
model_path, | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
# endregion | |
# region Convert data to a tf.data.Dataset | |
dataset_options = tf.data.Options() | |
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
num_replicas = training_args.strategy.num_replicas_in_sync | |
tf_data = {} | |
max_samples = { | |
"train": data_args.max_train_samples, | |
"validation": data_args.max_val_samples, | |
"test": data_args.max_test_samples, | |
} | |
for key in ("train", "validation", "test"): | |
if key not in datasets: | |
tf_data[key] = None | |
continue | |
if ( | |
(key == "train" and not training_args.do_train) | |
or (key == "validation" and not training_args.do_eval) | |
or (key == "test" and not training_args.do_predict) | |
): | |
tf_data[key] = None | |
continue | |
if key in ("train", "validation"): | |
assert "label" in datasets[key].features, f"Missing labels from {key} data!" | |
if key == "train": | |
shuffle = True | |
batch_size = training_args.per_device_train_batch_size * num_replicas | |
else: | |
shuffle = False | |
batch_size = training_args.per_device_eval_batch_size * num_replicas | |
samples_limit = max_samples[key] | |
dataset = datasets[key] | |
if samples_limit is not None: | |
dataset = dataset.select(range(samples_limit)) | |
# model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in | |
# training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also | |
# use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names | |
# yourself if you use this method, whereas they are automatically inferred from the model input names when | |
# using model.prepare_tf_dataset() | |
# For more info see the docs: | |
# https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset | |
# https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset | |
data = model.prepare_tf_dataset( | |
dataset, | |
shuffle=shuffle, | |
batch_size=batch_size, | |
tokenizer=tokenizer, | |
) | |
data = data.with_options(dataset_options) | |
tf_data[key] = data | |
# endregion | |
# region Optimizer, loss and compilation | |
if training_args.do_train: | |
num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs | |
if training_args.warmup_steps > 0: | |
num_warmup_steps = training_args.warmup_steps | |
elif training_args.warmup_ratio > 0: | |
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
else: | |
num_warmup_steps = 0 | |
optimizer, schedule = create_optimizer( | |
init_lr=training_args.learning_rate, | |
num_train_steps=num_train_steps, | |
num_warmup_steps=num_warmup_steps, | |
adam_beta1=training_args.adam_beta1, | |
adam_beta2=training_args.adam_beta2, | |
adam_epsilon=training_args.adam_epsilon, | |
weight_decay_rate=training_args.weight_decay, | |
adam_global_clipnorm=training_args.max_grad_norm, | |
) | |
else: | |
optimizer = None | |
if is_regression: | |
metrics = [] | |
else: | |
metrics = ["accuracy"] | |
# Transformers models compute the right loss for their task by default when labels are passed, and will | |
# use this for training unless you specify your own loss function in compile(). | |
model.compile(optimizer=optimizer, metrics=metrics) | |
# endregion | |
# region Preparing push_to_hub and model card | |
push_to_hub_model_id = training_args.push_to_hub_model_id | |
model_name = model_args.model_name_or_path.split("/")[-1] | |
if not push_to_hub_model_id: | |
push_to_hub_model_id = f"{model_name}-finetuned-text-classification" | |
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} | |
if training_args.push_to_hub: | |
callbacks = [ | |
PushToHubCallback( | |
output_dir=training_args.output_dir, | |
hub_model_id=push_to_hub_model_id, | |
hub_token=training_args.push_to_hub_token, | |
tokenizer=tokenizer, | |
**model_card_kwargs, | |
) | |
] | |
else: | |
callbacks = [] | |
# endregion | |
# region Training and validation | |
if tf_data["train"] is not None: | |
model.fit( | |
tf_data["train"], | |
validation_data=tf_data["validation"], | |
epochs=int(training_args.num_train_epochs), | |
callbacks=callbacks, | |
) | |
if tf_data["validation"] is not None: | |
logger.info("Computing metrics on validation data...") | |
if is_regression: | |
loss = model.evaluate(tf_data["validation"]) | |
logger.info(f"Eval loss: {loss:.5f}") | |
else: | |
loss, accuracy = model.evaluate(tf_data["validation"]) | |
logger.info(f"Eval loss: {loss:.5f}, Eval accuracy: {accuracy * 100:.4f}%") | |
if training_args.output_dir is not None: | |
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
eval_dict = {"eval_loss": loss} | |
if not is_regression: | |
eval_dict["eval_accuracy"] = accuracy | |
with open(output_eval_file, "w") as writer: | |
writer.write(json.dumps(eval_dict)) | |
# endregion | |
# region Prediction | |
if tf_data["test"] is not None: | |
logger.info("Doing predictions on test dataset...") | |
predictions = model.predict(tf_data["test"])["logits"] | |
predicted_class = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) | |
output_test_file = os.path.join(training_args.output_dir, "test_results.txt") | |
with open(output_test_file, "w") as writer: | |
writer.write("index\tprediction\n") | |
for index, item in enumerate(predicted_class): | |
if is_regression: | |
writer.write(f"{index}\t{item:3.3f}\n") | |
else: | |
item = config.id2label[item] | |
writer.write(f"{index}\t{item}\n") | |
logger.info(f"Wrote predictions to {output_test_file}!") | |
# endregion | |
if training_args.output_dir is not None and not training_args.push_to_hub: | |
# If we're not pushing to hub, at least save a local copy when we're done | |
model.save_pretrained(training_args.output_dir) | |
if __name__ == "__main__": | |
main() | |