File size: 41,923 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import ast
import collections
import functools
import json
import operator
import os
import re
import sys
import time
from typing import Dict, List, Optional, Union

import requests
from get_ci_error_statistics import get_job_links
from get_previous_daily_ci import get_last_daily_ci_reports
from slack_sdk import WebClient


client = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"])

NON_MODEL_TEST_MODULES = [
    "benchmark",
    "deepspeed",
    "extended",
    "fixtures",
    "generation",
    "onnx",
    "optimization",
    "pipelines",
    "sagemaker",
    "trainer",
    "utils",
]


def handle_test_results(test_results):
    expressions = test_results.split(" ")

    failed = 0
    success = 0

    # When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
    # When it is too long, those signs are not present.
    time_spent = expressions[-2] if "=" in expressions[-1] else expressions[-1]

    for i, expression in enumerate(expressions):
        if "failed" in expression:
            failed += int(expressions[i - 1])
        if "passed" in expression:
            success += int(expressions[i - 1])

    return failed, success, time_spent


def handle_stacktraces(test_results):
    # These files should follow the following architecture:
    # === FAILURES ===
    # <path>:<line>: Error ...
    # <path>:<line>: Error ...
    # <empty line>

    total_stacktraces = test_results.split("\n")[1:-1]
    stacktraces = []
    for stacktrace in total_stacktraces:
        try:
            line = stacktrace[: stacktrace.index(" ")].split(":")[-2]
            error_message = stacktrace[stacktrace.index(" ") :]

            stacktraces.append(f"(line {line}) {error_message}")
        except Exception:
            stacktraces.append("Cannot retrieve error message.")

    return stacktraces


def dicts_to_sum(objects: Union[Dict[str, Dict], List[dict]]):
    if isinstance(objects, dict):
        lists = objects.values()
    else:
        lists = objects

    # Convert each dictionary to counter
    counters = map(collections.Counter, lists)
    # Sum all the counters
    return functools.reduce(operator.add, counters)


class Message:
    def __init__(
        self, title: str, ci_title: str, model_results: Dict, additional_results: Dict, selected_warnings: List = None
    ):
        self.title = title
        self.ci_title = ci_title

        # Failures and success of the modeling tests
        self.n_model_success = sum(r["success"] for r in model_results.values())
        self.n_model_single_gpu_failures = sum(dicts_to_sum(r["failed"])["single"] for r in model_results.values())
        self.n_model_multi_gpu_failures = sum(dicts_to_sum(r["failed"])["multi"] for r in model_results.values())

        # Some suites do not have a distinction between single and multi GPU.
        self.n_model_unknown_failures = sum(dicts_to_sum(r["failed"])["unclassified"] for r in model_results.values())
        self.n_model_failures = (
            self.n_model_single_gpu_failures + self.n_model_multi_gpu_failures + self.n_model_unknown_failures
        )

        # Failures and success of the additional tests
        self.n_additional_success = sum(r["success"] for r in additional_results.values())

        all_additional_failures = dicts_to_sum([r["failed"] for r in additional_results.values()])
        self.n_additional_single_gpu_failures = all_additional_failures["single"]
        self.n_additional_multi_gpu_failures = all_additional_failures["multi"]
        self.n_additional_unknown_gpu_failures = all_additional_failures["unclassified"]
        self.n_additional_failures = (
            self.n_additional_single_gpu_failures
            + self.n_additional_multi_gpu_failures
            + self.n_additional_unknown_gpu_failures
        )

        # Results
        self.n_failures = self.n_model_failures + self.n_additional_failures
        self.n_success = self.n_model_success + self.n_additional_success
        self.n_tests = self.n_failures + self.n_success

        self.model_results = model_results
        self.additional_results = additional_results

        self.thread_ts = None

        if selected_warnings is None:
            selected_warnings = []
        self.selected_warnings = selected_warnings

    @property
    def time(self) -> str:
        all_results = [*self.model_results.values(), *self.additional_results.values()]
        time_spent = [r["time_spent"].split(", ")[0] for r in all_results if len(r["time_spent"])]
        total_secs = 0

        for time in time_spent:
            time_parts = time.split(":")

            # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
            if len(time_parts) == 1:
                time_parts = [0, 0, time_parts[0]]

            hours, minutes, seconds = int(time_parts[0]), int(time_parts[1]), float(time_parts[2])
            total_secs += hours * 3600 + minutes * 60 + seconds

        hours, minutes, seconds = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
        return f"{int(hours)}h{int(minutes)}m{int(seconds)}s"

    @property
    def header(self) -> Dict:
        return {"type": "header", "text": {"type": "plain_text", "text": self.title}}

    @property
    def ci_title_section(self) -> Dict:
        return {"type": "section", "text": {"type": "mrkdwn", "text": self.ci_title}}

    @property
    def no_failures(self) -> Dict:
        return {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.",
                "emoji": True,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
                "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
            },
        }

    @property
    def failures(self) -> Dict:
        return {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": (
                    f"There were {self.n_failures} failures, out of {self.n_tests} tests.\n"
                    f"Number of model failures: {self.n_model_failures}.\n"
                    f"The suite ran in {self.time}."
                ),
                "emoji": True,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
                "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
            },
        }

    @property
    def warnings(self) -> Dict:
        # If something goes wrong, let's avoid the CI report failing to be sent.
        button_text = "Check warnings (Link not found)"
        # Use the workflow run link
        job_link = f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}"
        if "Extract warnings in CI artifacts" in github_actions_job_links:
            button_text = "Check warnings"
            # Use the actual job link
            job_link = f"{github_actions_job_links['Extract warnings in CI artifacts']}"

        huggingface_hub_warnings = [x for x in self.selected_warnings if "huggingface_hub" in x]
        text = f"There are {len(self.selected_warnings)} warnings being selected."
        text += f"\n{len(huggingface_hub_warnings)} of them are from `huggingface_hub`."

        return {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": text,
                "emoji": True,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": button_text, "emoji": True},
                "url": job_link,
            },
        }

    @staticmethod
    def get_device_report(report, rjust=6):
        if "single" in report and "multi" in report:
            return f"{str(report['single']).rjust(rjust)} | {str(report['multi']).rjust(rjust)} | "
        elif "single" in report:
            return f"{str(report['single']).rjust(rjust)} | {'0'.rjust(rjust)} | "
        elif "multi" in report:
            return f"{'0'.rjust(rjust)} | {str(report['multi']).rjust(rjust)} | "

    @property
    def category_failures(self) -> Dict:
        model_failures = [v["failed"] for v in self.model_results.values()]

        category_failures = {}

        for model_failure in model_failures:
            for key, value in model_failure.items():
                if key not in category_failures:
                    category_failures[key] = dict(value)
                else:
                    category_failures[key]["unclassified"] += value["unclassified"]
                    category_failures[key]["single"] += value["single"]
                    category_failures[key]["multi"] += value["multi"]

        individual_reports = []
        for key, value in category_failures.items():
            device_report = self.get_device_report(value)

            if sum(value.values()):
                if device_report:
                    individual_reports.append(f"{device_report}{key}")
                else:
                    individual_reports.append(key)

        header = "Single |  Multi | Category\n"
        category_failures_report = prepare_reports(
            title="The following modeling categories had failures", header=header, reports=individual_reports
        )

        return {"type": "section", "text": {"type": "mrkdwn", "text": category_failures_report}}

    def compute_diff_for_failure_reports(self, curr_failure_report, prev_failure_report):  # noqa
        # Remove the leading and training parts that don't contain failure count information.
        model_failures = curr_failure_report.split("\n")[3:-2]
        prev_model_failures = prev_failure_report.split("\n")[3:-2]
        entries_changed = set(model_failures).difference(prev_model_failures)

        prev_map = {}
        for f in prev_model_failures:
            items = [x.strip() for x in f.split("| ")]
            prev_map[items[-1]] = [int(x) for x in items[:-1]]

        curr_map = {}
        for f in entries_changed:
            items = [x.strip() for x in f.split("| ")]
            curr_map[items[-1]] = [int(x) for x in items[:-1]]

        diff_map = {}
        for k, v in curr_map.items():
            if k not in prev_map:
                diff_map[k] = v
            else:
                diff = [x - y for x, y in zip(v, prev_map[k])]
                if max(diff) > 0:
                    diff_map[k] = diff

        entries_changed = []
        for model_name, diff_values in diff_map.items():
            diff = [str(x) for x in diff_values]
            diff = [f"+{x}" if (x != "0" and not x.startswith("-")) else x for x in diff]
            diff = [x.rjust(9) for x in diff]
            device_report = " | ".join(diff) + " | "
            report = f"{device_report}{model_name}"
            entries_changed.append(report)
        entries_changed = sorted(entries_changed, key=lambda s: s.split("| ")[-1])

        return entries_changed

    @property
    def model_failures(self) -> Dict:
        # Obtain per-model failures
        def per_model_sum(model_category_dict):
            return dicts_to_sum(model_category_dict["failed"].values())

        failures = {}
        non_model_failures = {
            k: per_model_sum(v) for k, v in self.model_results.items() if sum(per_model_sum(v).values())
        }

        for k, v in self.model_results.items():
            if k in NON_MODEL_TEST_MODULES:
                pass

            if sum(per_model_sum(v).values()):
                dict_failed = dict(v["failed"])
                pytorch_specific_failures = dict_failed.pop("PyTorch")
                tensorflow_specific_failures = dict_failed.pop("TensorFlow")
                other_failures = dicts_to_sum(dict_failed.values())

                failures[k] = {
                    "PyTorch": pytorch_specific_failures,
                    "TensorFlow": tensorflow_specific_failures,
                    "other": other_failures,
                }

        model_reports = []
        other_module_reports = []

        for key, value in non_model_failures.items():
            if key in NON_MODEL_TEST_MODULES:
                device_report = self.get_device_report(value)

                if sum(value.values()):
                    if device_report:
                        report = f"{device_report}{key}"
                    else:
                        report = key

                    other_module_reports.append(report)

        for key, value in failures.items():
            device_report_values = [
                value["PyTorch"]["single"],
                value["PyTorch"]["multi"],
                value["TensorFlow"]["single"],
                value["TensorFlow"]["multi"],
                sum(value["other"].values()),
            ]

            if sum(device_report_values):
                device_report = " | ".join([str(x).rjust(9) for x in device_report_values]) + " | "
                report = f"{device_report}{key}"

                model_reports.append(report)

        # (Possibly truncated) reports for the current workflow run - to be sent to Slack channels
        model_header = "Single PT |  Multi PT | Single TF |  Multi TF |     Other | Category\n"
        sorted_model_reports = sorted(model_reports, key=lambda s: s.split("| ")[-1])
        model_failures_report = prepare_reports(
            title="These following model modules had failures", header=model_header, reports=sorted_model_reports
        )

        module_header = "Single |  Multi | Category\n"
        sorted_module_reports = sorted(other_module_reports, key=lambda s: s.split("| ")[-1])
        module_failures_report = prepare_reports(
            title="The following non-model modules had failures", header=module_header, reports=sorted_module_reports
        )

        # To be sent to Slack channels
        model_failure_sections = [
            {"type": "section", "text": {"type": "mrkdwn", "text": model_failures_report}},
            {"type": "section", "text": {"type": "mrkdwn", "text": module_failures_report}},
        ]

        # Save the complete (i.e. no truncation) failure tables (of the current workflow run)
        # (to be uploaded as artifacts)
        if not os.path.isdir(os.path.join(os.getcwd(), "test_failure_tables")):
            os.makedirs(os.path.join(os.getcwd(), "test_failure_tables"))

        model_failures_report = prepare_reports(
            title="These following model modules had failures",
            header=model_header,
            reports=sorted_model_reports,
            to_truncate=False,
        )
        file_path = os.path.join(os.getcwd(), "test_failure_tables/model_failures_report.txt")
        with open(file_path, "w", encoding="UTF-8") as fp:
            fp.write(model_failures_report)

        module_failures_report = prepare_reports(
            title="The following non-model modules had failures",
            header=module_header,
            reports=sorted_module_reports,
            to_truncate=False,
        )
        file_path = os.path.join(os.getcwd(), "test_failure_tables/module_failures_report.txt")
        with open(file_path, "w", encoding="UTF-8") as fp:
            fp.write(module_failures_report)

        target_workflow = "huggingface/transformers/.github/workflows/self-scheduled.yml@refs/heads/main"
        if os.environ.get("CI_WORKFLOW_REF") == target_workflow:
            # Get the last previously completed CI's failure tables
            artifact_names = ["test_failure_tables"]
            output_dir = os.path.join(os.getcwd(), "previous_reports")
            os.makedirs(output_dir, exist_ok=True)
            prev_tables = get_last_daily_ci_reports(
                artifact_names=artifact_names, output_dir=output_dir, token=os.environ["ACCESS_REPO_INFO_TOKEN"]
            )

            # if the last run produces artifact named `test_failure_tables`
            if (
                "test_failure_tables" in prev_tables
                and "model_failures_report.txt" in prev_tables["test_failure_tables"]
            ):
                # Compute the difference of the previous/current (model failure) table
                prev_model_failures = prev_tables["test_failure_tables"]["model_failures_report.txt"]
                entries_changed = self.compute_diff_for_failure_reports(model_failures_report, prev_model_failures)
                if len(entries_changed) > 0:
                    # Save the complete difference
                    diff_report = prepare_reports(
                        title="Changed model modules failures",
                        header=model_header,
                        reports=entries_changed,
                        to_truncate=False,
                    )
                    file_path = os.path.join(os.getcwd(), "test_failure_tables/changed_model_failures_report.txt")
                    with open(file_path, "w", encoding="UTF-8") as fp:
                        fp.write(diff_report)

                    # To be sent to Slack channels
                    diff_report = prepare_reports(
                        title="*Changed model modules failures*",
                        header=model_header,
                        reports=entries_changed,
                    )
                    model_failure_sections.append(
                        {"type": "section", "text": {"type": "mrkdwn", "text": diff_report}},
                    )

        return model_failure_sections

    @property
    def additional_failures(self) -> Dict:
        failures = {k: v["failed"] for k, v in self.additional_results.items()}
        errors = {k: v["error"] for k, v in self.additional_results.items()}

        individual_reports = []
        for key, value in failures.items():
            device_report = self.get_device_report(value)

            if sum(value.values()) or errors[key]:
                report = f"{key}"
                if errors[key]:
                    report = f"[Errored out] {report}"
                if device_report:
                    report = f"{device_report}{report}"

                individual_reports.append(report)

        header = "Single |  Multi | Category\n"
        failures_report = prepare_reports(
            title="The following non-modeling tests had failures", header=header, reports=individual_reports
        )

        return {"type": "section", "text": {"type": "mrkdwn", "text": failures_report}}

    @property
    def payload(self) -> str:
        blocks = [self.header]

        if self.ci_title:
            blocks.append(self.ci_title_section)

        if self.n_model_failures > 0 or self.n_additional_failures > 0:
            blocks.append(self.failures)

        if self.n_model_failures > 0:
            blocks.append(self.category_failures)
            for block in self.model_failures:
                if block["text"]["text"]:
                    blocks.append(block)

        if self.n_additional_failures > 0:
            blocks.append(self.additional_failures)

        if self.n_model_failures == 0 and self.n_additional_failures == 0:
            blocks.append(self.no_failures)

        if len(self.selected_warnings) > 0:
            blocks.append(self.warnings)

        return json.dumps(blocks)

    @staticmethod
    def error_out(title, ci_title="", runner_not_available=False, runner_failed=False, setup_failed=False):
        blocks = []
        title_block = {"type": "header", "text": {"type": "plain_text", "text": title}}
        blocks.append(title_block)

        if ci_title:
            ci_title_block = {"type": "section", "text": {"type": "mrkdwn", "text": ci_title}}
            blocks.append(ci_title_block)

        offline_runners = []
        if runner_not_available:
            text = "πŸ’” CI runners are not available! Tests are not run. 😭"
            result = os.environ.get("OFFLINE_RUNNERS")
            if result is not None:
                offline_runners = json.loads(result)
        elif runner_failed:
            text = "πŸ’” CI runners have problems! Tests are not run. 😭"
        elif setup_failed:
            text = "πŸ’” Setup job failed. Tests are not run. 😭"
        else:
            text = "πŸ’” There was an issue running the tests. 😭"

        error_block_1 = {
            "type": "header",
            "text": {
                "type": "plain_text",
                "text": text,
            },
        }

        text = ""
        if len(offline_runners) > 0:
            text = "\n  β€’ " + "\n  β€’ ".join(offline_runners)
            text = f"The following runners are offline:\n{text}\n\n"
        text += "πŸ™ Let's fix it ASAP! πŸ™"

        error_block_2 = {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": text,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
                "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
            },
        }
        blocks.extend([error_block_1, error_block_2])

        payload = json.dumps(blocks)

        print("Sending the following payload")
        print(json.dumps({"blocks": blocks}))

        client.chat_postMessage(
            channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"],
            text=text,
            blocks=payload,
        )

    def post(self):
        payload = self.payload
        print("Sending the following payload")
        print(json.dumps({"blocks": json.loads(payload)}))

        text = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed."

        self.thread_ts = client.chat_postMessage(
            channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"],
            blocks=payload,
            text=text,
        )

    def get_reply_blocks(self, job_name, job_result, failures, device, text):
        """
        failures: A list with elements of the form {"line": full test name, "trace": error trace}
        """
        # `text` must be less than 3001 characters in Slack SDK
        # keep some room for adding "[Truncated]" when necessary
        MAX_ERROR_TEXT = 3000 - len("[Truncated]")

        failure_text = ""
        for idx, error in enumerate(failures):
            new_text = failure_text + f'*{error["line"]}*\n_{error["trace"]}_\n\n'
            if len(new_text) > MAX_ERROR_TEXT:
                # `failure_text` here has length <= 3000
                failure_text = failure_text + "[Truncated]"
                break
            # `failure_text` here has length <= MAX_ERROR_TEXT
            failure_text = new_text

        title = job_name
        if device is not None:
            title += f" ({device}-gpu)"

        content = {"type": "section", "text": {"type": "mrkdwn", "text": text}}

        # TODO: Make sure we always have a valid job link (or at least a way not to break the report sending)
        # Currently we get the device from a job's artifact name.
        # If a device is found, the job name should contain the device type, for example, `XXX (single-gpu)`.
        # This could be done by adding `machine_type` in a job's `strategy`.
        # (If `job_result["job_link"][device]` is `None`, we get an error: `... [ERROR] must provide a string ...`)
        if job_result["job_link"] is not None and job_result["job_link"][device] is not None:
            content["accessory"] = {
                "type": "button",
                "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
                "url": job_result["job_link"][device],
            }

        return [
            {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
            content,
            {"type": "section", "text": {"type": "mrkdwn", "text": failure_text}},
        ]

    def post_reply(self):
        if self.thread_ts is None:
            raise ValueError("Can only post reply if a post has been made.")

        sorted_dict = sorted(self.model_results.items(), key=lambda t: t[0])
        for job, job_result in sorted_dict:
            if len(job_result["failures"]):
                for device, failures in job_result["failures"].items():
                    text = "\n".join(
                        sorted([f"*{k}*: {v[device]}" for k, v in job_result["failed"].items() if v[device]])
                    )

                    blocks = self.get_reply_blocks(job, job_result, failures, device, text=text)

                    print("Sending the following reply")
                    print(json.dumps({"blocks": blocks}))

                    client.chat_postMessage(
                        channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"],
                        text=f"Results for {job}",
                        blocks=blocks,
                        thread_ts=self.thread_ts["ts"],
                    )

                    time.sleep(1)

        for job, job_result in self.additional_results.items():
            if len(job_result["failures"]):
                for device, failures in job_result["failures"].items():
                    blocks = self.get_reply_blocks(
                        job,
                        job_result,
                        failures,
                        device,
                        text=f'Number of failures: {job_result["failed"][device]}',
                    )

                    print("Sending the following reply")
                    print(json.dumps({"blocks": blocks}))

                    client.chat_postMessage(
                        channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"],
                        text=f"Results for {job}",
                        blocks=blocks,
                        thread_ts=self.thread_ts["ts"],
                    )

                    time.sleep(1)


def retrieve_artifact(artifact_path: str, gpu: Optional[str]):
    if gpu not in [None, "single", "multi"]:
        raise ValueError(f"Invalid GPU for artifact. Passed GPU: `{gpu}`.")

    _artifact = {}

    if os.path.exists(artifact_path):
        files = os.listdir(artifact_path)
        for file in files:
            try:
                with open(os.path.join(artifact_path, file)) as f:
                    _artifact[file.split(".")[0]] = f.read()
            except UnicodeDecodeError as e:
                raise ValueError(f"Could not open {os.path.join(artifact_path, file)}.") from e

    return _artifact


def retrieve_available_artifacts():
    class Artifact:
        def __init__(self, name: str, single_gpu: bool = False, multi_gpu: bool = False):
            self.name = name
            self.single_gpu = single_gpu
            self.multi_gpu = multi_gpu
            self.paths = []

        def __str__(self):
            return self.name

        def add_path(self, path: str, gpu: str = None):
            self.paths.append({"name": self.name, "path": path, "gpu": gpu})

    _available_artifacts: Dict[str, Artifact] = {}

    directories = filter(os.path.isdir, os.listdir())
    for directory in directories:
        artifact_name = directory

        name_parts = artifact_name.split("_postfix_")
        if len(name_parts) > 1:
            artifact_name = name_parts[0]

        if artifact_name.startswith("single-gpu"):
            artifact_name = artifact_name[len("single-gpu") + 1 :]

            if artifact_name in _available_artifacts:
                _available_artifacts[artifact_name].single_gpu = True
            else:
                _available_artifacts[artifact_name] = Artifact(artifact_name, single_gpu=True)

            _available_artifacts[artifact_name].add_path(directory, gpu="single")

        elif artifact_name.startswith("multi-gpu"):
            artifact_name = artifact_name[len("multi-gpu") + 1 :]

            if artifact_name in _available_artifacts:
                _available_artifacts[artifact_name].multi_gpu = True
            else:
                _available_artifacts[artifact_name] = Artifact(artifact_name, multi_gpu=True)

            _available_artifacts[artifact_name].add_path(directory, gpu="multi")
        else:
            if artifact_name not in _available_artifacts:
                _available_artifacts[artifact_name] = Artifact(artifact_name)

            _available_artifacts[artifact_name].add_path(directory)

    return _available_artifacts


def prepare_reports(title, header, reports, to_truncate=True):
    report = ""

    MAX_ERROR_TEXT = 3000 - len("[Truncated]")
    if not to_truncate:
        MAX_ERROR_TEXT = float("inf")

    if len(reports) > 0:
        # `text` must be less than 3001 characters in Slack SDK
        # keep some room for adding "[Truncated]" when necessary

        for idx in range(len(reports)):
            _report = header + "\n".join(reports[: idx + 1])
            new_report = f"{title}:\n```\n{_report}\n```\n"
            if len(new_report) > MAX_ERROR_TEXT:
                # `report` here has length <= 3000
                report = report + "[Truncated]"
                break
            report = new_report

    return report


if __name__ == "__main__":
    runner_status = os.environ.get("RUNNER_STATUS")
    runner_env_status = os.environ.get("RUNNER_ENV_STATUS")
    setup_status = os.environ.get("SETUP_STATUS")

    runner_not_available = True if runner_status is not None and runner_status != "success" else False
    runner_failed = True if runner_env_status is not None and runner_env_status != "success" else False
    setup_failed = True if setup_status is not None and setup_status != "success" else False

    org = "huggingface"
    repo = "transformers"
    repository_full_name = f"{org}/{repo}"

    # This env. variable is set in workflow file (under the job `send_results`).
    ci_event = os.environ["CI_EVENT"]

    # To find the PR number in a commit title, for example, `Add AwesomeFormer model (#99999)`
    pr_number_re = re.compile(r"\(#(\d+)\)$")

    title = f"πŸ€— Results of the {ci_event} tests."
    # Add Commit/PR title with a link for push CI
    # (check the title in 2 env. variables - depending on the CI is triggered via `push` or `workflow_run` event)
    ci_title_push = os.environ.get("CI_TITLE_PUSH")
    ci_title_workflow_run = os.environ.get("CI_TITLE_WORKFLOW_RUN")
    ci_title = ci_title_push if ci_title_push else ci_title_workflow_run

    ci_sha = os.environ.get("CI_SHA")

    ci_url = None
    if ci_sha:
        ci_url = f"https://github.com/{repository_full_name}/commit/{ci_sha}"

    if ci_title is not None:
        if ci_url is None:
            raise ValueError(
                "When a title is found (`ci_title`), it means a `push` event or a `workflow_run` even (triggered by "
                "another `push` event), and the commit SHA has to be provided in order to create the URL to the "
                "commit page."
            )
        ci_title = ci_title.strip().split("\n")[0].strip()

        # Retrieve the PR title and author login to complete the report
        commit_number = ci_url.split("/")[-1]
        ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/commits/{commit_number}"
        ci_details = requests.get(ci_detail_url).json()
        ci_author = ci_details["author"]["login"]

        merged_by = None
        # Find the PR number (if any) and change the url to the actual PR page.
        numbers = pr_number_re.findall(ci_title)
        if len(numbers) > 0:
            pr_number = numbers[0]
            ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/pulls/{pr_number}"
            ci_details = requests.get(ci_detail_url).json()

            ci_author = ci_details["user"]["login"]
            ci_url = f"https://github.com/{repository_full_name}/pull/{pr_number}"

            merged_by = ci_details["merged_by"]["login"]

        if merged_by is None:
            ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author}"
        else:
            ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author} | Merged by: {merged_by}"

    elif ci_sha:
        ci_title = f"<{ci_url}|commit: {ci_sha}>"

    else:
        ci_title = ""

    if runner_not_available or runner_failed or setup_failed:
        Message.error_out(title, ci_title, runner_not_available, runner_failed, setup_failed)
        exit(0)

    arguments = sys.argv[1:][0]
    try:
        models = ast.literal_eval(arguments)
        # Need to change from elements like `models/bert` to `models_bert` (the ones used as artifact names).
        models = [x.replace("models/", "models_") for x in models]
    except SyntaxError:
        Message.error_out(title, ci_title)
        raise ValueError("Errored out.")

    github_actions_job_links = get_job_links(
        workflow_run_id=os.environ["GITHUB_RUN_ID"], token=os.environ["ACCESS_REPO_INFO_TOKEN"]
    )
    available_artifacts = retrieve_available_artifacts()

    modeling_categories = [
        "PyTorch",
        "TensorFlow",
        "Flax",
        "Tokenizers",
        "Pipelines",
        "Trainer",
        "ONNX",
        "Auto",
        "Unclassified",
    ]

    # This dict will contain all the information relative to each model:
    # - Failures: the total, as well as the number of failures per-category defined above
    # - Success: total
    # - Time spent: as a comma-separated list of elapsed time
    # - Failures: as a line-break separated list of errors
    model_results = {
        model: {
            "failed": {m: {"unclassified": 0, "single": 0, "multi": 0} for m in modeling_categories},
            "success": 0,
            "time_spent": "",
            "failures": {},
            "job_link": {},
        }
        for model in models
        if f"run_all_tests_gpu_{model}_test_reports" in available_artifacts
    }

    unclassified_model_failures = []

    # This prefix is used to get job links below. For past CI, we use `workflow_call`, which changes the job names from
    # `Model tests (...)` to `PyTorch 1.5 / Model tests (...)` for example.
    job_name_prefix = ""
    if ci_event.startswith("Past CI - "):
        framework, version = ci_event.replace("Past CI - ", "").split("-")
        framework = "PyTorch" if framework == "pytorch" else "TensorFlow"
        job_name_prefix = f"{framework} {version}"
    elif ci_event.startswith("Nightly CI"):
        job_name_prefix = "Nightly CI"

    for model in model_results.keys():
        for artifact_path in available_artifacts[f"run_all_tests_gpu_{model}_test_reports"].paths:
            artifact = retrieve_artifact(artifact_path["path"], artifact_path["gpu"])
            if "stats" in artifact:
                # Link to the GitHub Action job
                # The job names use `matrix.folder` which contain things like `models/bert` instead of `models_bert`
                job_name = f"Model tests ({model.replace('models_', 'models/')}, {artifact_path['gpu']}-gpu)"
                if job_name_prefix:
                    job_name = f"{job_name_prefix} / {job_name}"
                model_results[model]["job_link"][artifact_path["gpu"]] = github_actions_job_links.get(job_name)
                failed, success, time_spent = handle_test_results(artifact["stats"])
                model_results[model]["success"] += success
                model_results[model]["time_spent"] += time_spent[1:-1] + ", "

                stacktraces = handle_stacktraces(artifact["failures_line"])

                for line in artifact["summary_short"].split("\n"):
                    if line.startswith("FAILED "):
                        line = line[len("FAILED ") :]
                        line = line.split()[0].replace("\n", "")

                        if artifact_path["gpu"] not in model_results[model]["failures"]:
                            model_results[model]["failures"][artifact_path["gpu"]] = []

                        model_results[model]["failures"][artifact_path["gpu"]].append(
                            {"line": line, "trace": stacktraces.pop(0)}
                        )

                        if re.search("test_modeling_tf_", line):
                            model_results[model]["failed"]["TensorFlow"][artifact_path["gpu"]] += 1

                        elif re.search("test_modeling_flax_", line):
                            model_results[model]["failed"]["Flax"][artifact_path["gpu"]] += 1

                        elif re.search("test_modeling", line):
                            model_results[model]["failed"]["PyTorch"][artifact_path["gpu"]] += 1

                        elif re.search("test_tokenization", line):
                            model_results[model]["failed"]["Tokenizers"][artifact_path["gpu"]] += 1

                        elif re.search("test_pipelines", line):
                            model_results[model]["failed"]["Pipelines"][artifact_path["gpu"]] += 1

                        elif re.search("test_trainer", line):
                            model_results[model]["failed"]["Trainer"][artifact_path["gpu"]] += 1

                        elif re.search("onnx", line):
                            model_results[model]["failed"]["ONNX"][artifact_path["gpu"]] += 1

                        elif re.search("auto", line):
                            model_results[model]["failed"]["Auto"][artifact_path["gpu"]] += 1

                        else:
                            model_results[model]["failed"]["Unclassified"][artifact_path["gpu"]] += 1
                            unclassified_model_failures.append(line)

    # Additional runs
    additional_files = {
        "Examples directory": "run_examples_gpu",
        "PyTorch pipelines": "run_tests_torch_pipeline_gpu",
        "TensorFlow pipelines": "run_tests_tf_pipeline_gpu",
        "Torch CUDA extension tests": "run_tests_torch_cuda_extensions_gpu_test_reports",
    }

    if ci_event in ["push", "Nightly CI"] or ci_event.startswith("Past CI"):
        del additional_files["Examples directory"]
        del additional_files["PyTorch pipelines"]
        del additional_files["TensorFlow pipelines"]

    additional_results = {
        key: {
            "failed": {"unclassified": 0, "single": 0, "multi": 0},
            "success": 0,
            "time_spent": "",
            "error": False,
            "failures": {},
            "job_link": {},
        }
        for key in additional_files.keys()
    }

    for key in additional_results.keys():
        # If a whole suite of test fails, the artifact isn't available.
        if additional_files[key] not in available_artifacts:
            additional_results[key]["error"] = True
            continue

        for artifact_path in available_artifacts[additional_files[key]].paths:
            # Link to the GitHub Action job
            job_name = key
            if artifact_path["gpu"] is not None:
                job_name = f"{key} ({artifact_path['gpu']}-gpu)"
            if job_name_prefix:
                job_name = f"{job_name_prefix} / {job_name}"
            additional_results[key]["job_link"][artifact_path["gpu"]] = github_actions_job_links.get(job_name)

            artifact = retrieve_artifact(artifact_path["path"], artifact_path["gpu"])
            stacktraces = handle_stacktraces(artifact["failures_line"])

            failed, success, time_spent = handle_test_results(artifact["stats"])
            additional_results[key]["failed"][artifact_path["gpu"] or "unclassified"] += failed
            additional_results[key]["success"] += success
            additional_results[key]["time_spent"] += time_spent[1:-1] + ", "

            if len(artifact["errors"]):
                additional_results[key]["error"] = True

            if failed:
                for line in artifact["summary_short"].split("\n"):
                    if line.startswith("FAILED "):
                        line = line[len("FAILED ") :]
                        line = line.split()[0].replace("\n", "")

                        if artifact_path["gpu"] not in additional_results[key]["failures"]:
                            additional_results[key]["failures"][artifact_path["gpu"]] = []

                        additional_results[key]["failures"][artifact_path["gpu"]].append(
                            {"line": line, "trace": stacktraces.pop(0)}
                        )

    selected_warnings = []
    if "warnings_in_ci" in available_artifacts:
        directory = available_artifacts["warnings_in_ci"].paths[0]["path"]
        with open(os.path.join(directory, "selected_warnings.json")) as fp:
            selected_warnings = json.load(fp)

    message = Message(title, ci_title, model_results, additional_results, selected_warnings=selected_warnings)

    # send report only if there is any failure (for push CI)
    if message.n_failures or ci_event != "push":
        message.post()
        message.post_reply()