File size: 16,292 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

if is_vision_available():
    import PIL

    from transformers import FlavaImageProcessor
    from transformers.image_utils import PILImageResampling
    from transformers.models.flava.image_processing_flava import (
        FLAVA_CODEBOOK_MEAN,
        FLAVA_CODEBOOK_STD,
        FLAVA_IMAGE_MEAN,
        FLAVA_IMAGE_STD,
    )
else:
    FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None


class FlavaImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_center_crop=True,
        crop_size=None,
        resample=None,
        do_rescale=True,
        rescale_factor=1 / 255,
        do_normalize=True,
        image_mean=FLAVA_IMAGE_MEAN,
        image_std=FLAVA_IMAGE_STD,
        input_size_patches=14,
        total_mask_patches=75,
        mask_group_max_patches=None,
        mask_group_min_patches=16,
        mask_group_min_aspect_ratio=0.3,
        mask_group_max_aspect_ratio=None,
        codebook_do_resize=True,
        codebook_size=None,
        codebook_resample=None,
        codebook_do_center_crop=True,
        codebook_crop_size=None,
        codebook_do_map_pixels=True,
        codebook_do_normalize=True,
        codebook_image_mean=FLAVA_CODEBOOK_MEAN,
        codebook_image_std=FLAVA_CODEBOOK_STD,
    ):
        size = size if size is not None else {"height": 224, "width": 224}
        crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
        codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
        codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}

        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.do_resize = do_resize
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.size = size
        self.resample = resample if resample is not None else PILImageResampling.BICUBIC
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size

        self.input_size_patches = input_size_patches
        self.total_mask_patches = total_mask_patches
        self.mask_group_max_patches = mask_group_max_patches
        self.mask_group_min_patches = mask_group_min_patches
        self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
        self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio

        self.codebook_do_resize = codebook_do_resize
        self.codebook_size = codebook_size
        self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
        self.codebook_do_center_crop = codebook_do_center_crop
        self.codebook_crop_size = codebook_crop_size
        self.codebook_do_map_pixels = codebook_do_map_pixels
        self.codebook_do_normalize = codebook_do_normalize
        self.codebook_image_mean = codebook_image_mean
        self.codebook_image_std = codebook_image_std

    def prepare_image_processor_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "resample": self.resample,
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "input_size_patches": self.input_size_patches,
            "total_mask_patches": self.total_mask_patches,
            "mask_group_max_patches": self.mask_group_max_patches,
            "mask_group_min_patches": self.mask_group_min_patches,
            "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
            "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
            "codebook_do_resize": self.codebook_do_resize,
            "codebook_size": self.codebook_size,
            "codebook_resample": self.codebook_resample,
            "codebook_do_center_crop": self.codebook_do_center_crop,
            "codebook_crop_size": self.codebook_crop_size,
            "codebook_do_map_pixels": self.codebook_do_map_pixels,
            "codebook_do_normalize": self.codebook_do_normalize,
            "codebook_image_mean": self.codebook_image_mean,
            "codebook_image_std": self.codebook_image_std,
        }

    def get_expected_image_size(self):
        return (self.size["height"], self.size["width"])

    def get_expected_mask_size(self):
        return (
            (self.input_size_patches, self.input_size_patches)
            if not isinstance(self.input_size_patches, tuple)
            else self.input_size_patches
        )

    def get_expected_codebook_image_size(self):
        return (self.codebook_size["height"], self.codebook_size["width"])

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )


@require_torch
@require_vision
class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = FlavaImageProcessor if is_vision_available() else None
    maxDiff = None

    def setUp(self):
        self.image_processor_tester = FlavaImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "crop_size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "masking_generator"))
        self.assertTrue(hasattr(image_processing, "codebook_do_resize"))
        self.assertTrue(hasattr(image_processing, "codebook_size"))
        self.assertTrue(hasattr(image_processing, "codebook_resample"))
        self.assertTrue(hasattr(image_processing, "codebook_do_center_crop"))
        self.assertTrue(hasattr(image_processing, "codebook_crop_size"))
        self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels"))
        self.assertTrue(hasattr(image_processing, "codebook_do_normalize"))
        self.assertTrue(hasattr(image_processing, "codebook_image_mean"))
        self.assertTrue(hasattr(image_processing, "codebook_image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112})

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66
        )
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
        self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})

    def test_call_pil(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, PIL.Image.Image)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def _test_call_framework(self, instance_class, prepare_kwargs):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs)
        for image in image_inputs:
            self.assertIsInstance(image, instance_class)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")

        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
        )

        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")

        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
                self.image_processor_tester.batch_size,
                expected_height,
                expected_width,
            ),
        )

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

        # Test masking
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")

        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
                self.image_processor_tester.batch_size,
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})

    def test_call_numpy_4_channels(self):
        self.image_processing_class.num_channels = 4
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
        self.image_processing_class.num_channels = 3

    def test_call_pytorch(self):
        self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})

    def test_masking(self):
        # Initialize image_processing
        random.seed(1234)
        image_processing = self.image_processing_class(**self.image_processor_dict)
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
        self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)

    def test_codebook_pixels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, PIL.Image.Image)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )