File size: 20,502 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path

import pytest

import transformers
from transformers import (
    BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
    GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
    AutoTokenizer,
    BertConfig,
    BertTokenizer,
    BertTokenizerFast,
    CTRLTokenizer,
    GPT2Tokenizer,
    GPT2TokenizerFast,
    PreTrainedTokenizerFast,
    RobertaTokenizer,
    RobertaTokenizerFast,
    is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
    TOKENIZER_MAPPING,
    get_tokenizer_config,
    tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
    DUMMY_DIFF_TOKENIZER_IDENTIFIER,
    DUMMY_UNKNOWN_IDENTIFIER,
    SMALL_MODEL_IDENTIFIER,
    RequestCounter,
    require_tokenizers,
    slow,
)


sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))

from test_module.custom_configuration import CustomConfig  # noqa E402
from test_module.custom_tokenization import CustomTokenizer  # noqa E402


if is_tokenizers_available():
    from test_module.custom_tokenization_fast import CustomTokenizerFast


class AutoTokenizerTest(unittest.TestCase):
    def setUp(self):
        transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0

    @slow
    def test_tokenizer_from_pretrained(self):
        for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
            self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
            self.assertGreater(len(tokenizer), 0)

        for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
            self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
            self.assertGreater(len(tokenizer), 0)

    def test_tokenizer_from_pretrained_identifier(self):
        tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
        self.assertEqual(tokenizer.vocab_size, 12)

    def test_tokenizer_from_model_type(self):
        tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
        self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
        self.assertEqual(tokenizer.vocab_size, 20)

    def test_tokenizer_from_tokenizer_class(self):
        config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER)
        self.assertIsInstance(config, RobertaConfig)
        # Check that tokenizer_type ≠ model_type
        tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config)
        self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
        self.assertEqual(tokenizer.vocab_size, 12)

    def test_tokenizer_from_type(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))

            tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert", use_fast=False)
            self.assertIsInstance(tokenizer, BertTokenizer)

        with tempfile.TemporaryDirectory() as tmp_dir:
            shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
            shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))

            tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2", use_fast=False)
            self.assertIsInstance(tokenizer, GPT2Tokenizer)

    @require_tokenizers
    def test_tokenizer_from_type_fast(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))

            tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert")
            self.assertIsInstance(tokenizer, BertTokenizerFast)

        with tempfile.TemporaryDirectory() as tmp_dir:
            shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
            shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))

            tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2")
            self.assertIsInstance(tokenizer, GPT2TokenizerFast)

    def test_tokenizer_from_type_incorrect_name(self):
        with pytest.raises(ValueError):
            AutoTokenizer.from_pretrained("./", tokenizer_type="xxx")

    @require_tokenizers
    def test_tokenizer_identifier_with_correct_config(self):
        for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
            tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
            self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))

            if isinstance(tokenizer, BertTokenizer):
                self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
            else:
                self.assertEqual(tokenizer.do_lower_case, False)

            self.assertEqual(tokenizer.model_max_length, 512)

    @require_tokenizers
    def test_tokenizer_identifier_non_existent(self):
        for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
            with self.assertRaisesRegex(
                EnvironmentError,
                "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier",
            ):
                _ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")

    def test_model_name_edge_cases_in_mappings(self):
        # tests: https://github.com/huggingface/transformers/pull/13251
        # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
        # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
        tokenizers = TOKENIZER_MAPPING.values()
        tokenizer_names = []

        for slow_tok, fast_tok in tokenizers:
            if slow_tok is not None:
                tokenizer_names.append(slow_tok.__name__)

            if fast_tok is not None:
                tokenizer_names.append(fast_tok.__name__)

        for tokenizer_name in tokenizer_names:
            # must find the right class
            tokenizer_class_from_name(tokenizer_name)

    @require_tokenizers
    def test_from_pretrained_use_fast_toggle(self):
        self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer)
        self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast)

    @require_tokenizers
    def test_do_lower_case(self):
        tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", do_lower_case=False)
        sample = "Hello, world. How are you?"
        tokens = tokenizer.tokenize(sample)
        self.assertEqual("[UNK]", tokens[0])

        tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False)
        tokens = tokenizer.tokenize(sample)
        self.assertEqual("[UNK]", tokens[0])

    @require_tokenizers
    def test_PreTrainedTokenizerFast_from_pretrained(self):
        tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config")
        self.assertEqual(type(tokenizer), PreTrainedTokenizerFast)
        self.assertEqual(tokenizer.model_max_length, 512)
        self.assertEqual(tokenizer.vocab_size, 30000)
        self.assertEqual(tokenizer.unk_token, "[UNK]")
        self.assertEqual(tokenizer.padding_side, "right")
        self.assertEqual(tokenizer.truncation_side, "right")

    def test_auto_tokenizer_from_local_folder(self):
        tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
        with tempfile.TemporaryDirectory() as tmp_dir:
            tokenizer.save_pretrained(tmp_dir)
            tokenizer2 = AutoTokenizer.from_pretrained(tmp_dir)

        self.assertIsInstance(tokenizer2, tokenizer.__class__)
        self.assertEqual(tokenizer2.vocab_size, 12)

    def test_auto_tokenizer_fast_no_slow(self):
        tokenizer = AutoTokenizer.from_pretrained("ctrl")
        # There is no fast CTRL so this always gives us a slow tokenizer.
        self.assertIsInstance(tokenizer, CTRLTokenizer)

    def test_get_tokenizer_config(self):
        # Check we can load the tokenizer config of an online model.
        config = get_tokenizer_config("bert-base-cased")
        _ = config.pop("_commit_hash", None)
        # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
        self.assertEqual(config, {"do_lower_case": False})

        # This model does not have a tokenizer_config so we get back an empty dict.
        config = get_tokenizer_config(SMALL_MODEL_IDENTIFIER)
        self.assertDictEqual(config, {})

        # A tokenizer saved with `save_pretrained` always creates a tokenizer config.
        tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tokenizer.save_pretrained(tmp_dir)
            config = get_tokenizer_config(tmp_dir)

        # Check the class of the tokenizer was properly saved (note that it always saves the slow class).
        self.assertEqual(config["tokenizer_class"], "BertTokenizer")

    def test_new_tokenizer_registration(self):
        try:
            AutoConfig.register("custom", CustomConfig)

            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
            # Trying to register something existing in the Transformers library will raise an error
            with self.assertRaises(ValueError):
                AutoTokenizer.register(BertConfig, slow_tokenizer_class=BertTokenizer)

            tokenizer = CustomTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer.save_pretrained(tmp_dir)

                new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
                self.assertIsInstance(new_tokenizer, CustomTokenizer)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]

    @require_tokenizers
    def test_new_tokenizer_fast_registration(self):
        try:
            AutoConfig.register("custom", CustomConfig)

            # Can register in two steps
            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
            self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None))
            AutoTokenizer.register(CustomConfig, fast_tokenizer_class=CustomTokenizerFast)
            self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast))

            del TOKENIZER_MAPPING._extra_content[CustomConfig]
            # Can register in one step
            AutoTokenizer.register(
                CustomConfig, slow_tokenizer_class=CustomTokenizer, fast_tokenizer_class=CustomTokenizerFast
            )
            self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast))

            # Trying to register something existing in the Transformers library will raise an error
            with self.assertRaises(ValueError):
                AutoTokenizer.register(BertConfig, fast_tokenizer_class=BertTokenizerFast)

            # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
            # and that model does not have a tokenizer.json
            with tempfile.TemporaryDirectory() as tmp_dir:
                bert_tokenizer = BertTokenizerFast.from_pretrained(SMALL_MODEL_IDENTIFIER)
                bert_tokenizer.save_pretrained(tmp_dir)
                tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir)

            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer.save_pretrained(tmp_dir)

                new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
                self.assertIsInstance(new_tokenizer, CustomTokenizerFast)

                new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, use_fast=False)
                self.assertIsInstance(new_tokenizer, CustomTokenizer)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]

    def test_from_pretrained_dynamic_tokenizer(self):
        # If remote code is not set, we will time out when asking whether to load the model.
        with self.assertRaises(ValueError):
            tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer")
        # If remote code is disabled, we can't load this config.
        with self.assertRaises(ValueError):
            tokenizer = AutoTokenizer.from_pretrained(
                "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False
            )

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True)
        self.assertTrue(tokenizer.special_attribute_present)
        # Test tokenizer can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            tokenizer.save_pretrained(tmp_dir)
            reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True)
        self.assertTrue(reloaded_tokenizer.special_attribute_present)

        if is_tokenizers_available():
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
            self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizerFast")

            # Test we can also load the slow version
            tokenizer = AutoTokenizer.from_pretrained(
                "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False
            )
            self.assertTrue(tokenizer.special_attribute_present)
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
            # Test tokenizer can be reloaded.
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer.save_pretrained(tmp_dir)
                reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True, use_fast=False)
            self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer")
            self.assertTrue(reloaded_tokenizer.special_attribute_present)
        else:
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
            self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer")

    @require_tokenizers
    def test_from_pretrained_dynamic_tokenizer_conflict(self):
        class NewTokenizer(BertTokenizer):
            special_attribute_present = False

        class NewTokenizerFast(BertTokenizerFast):
            slow_tokenizer_class = NewTokenizer
            special_attribute_present = False

        try:
            AutoConfig.register("custom", CustomConfig)
            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
            AutoTokenizer.register(CustomConfig, fast_tokenizer_class=NewTokenizerFast)
            # If remote code is not set, the default is to use local
            tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer")
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
            self.assertFalse(tokenizer.special_attribute_present)
            tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", use_fast=False)
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
            self.assertFalse(tokenizer.special_attribute_present)

            # If remote code is disabled, we load the local one.
            tokenizer = AutoTokenizer.from_pretrained(
                "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False
            )
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
            self.assertFalse(tokenizer.special_attribute_present)
            tokenizer = AutoTokenizer.from_pretrained(
                "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False, use_fast=False
            )
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
            self.assertFalse(tokenizer.special_attribute_present)

            # If remote is enabled, we load from the Hub
            tokenizer = AutoTokenizer.from_pretrained(
                "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True
            )
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
            self.assertTrue(tokenizer.special_attribute_present)
            tokenizer = AutoTokenizer.from_pretrained(
                "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False
            )
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
            self.assertTrue(tokenizer.special_attribute_present)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]

    def test_from_pretrained_dynamic_tokenizer_legacy_format(self):
        tokenizer = AutoTokenizer.from_pretrained(
            "hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True
        )
        self.assertTrue(tokenizer.special_attribute_present)
        if is_tokenizers_available():
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")

            # Test we can also load the slow version
            tokenizer = AutoTokenizer.from_pretrained(
                "hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True, use_fast=False
            )
            self.assertTrue(tokenizer.special_attribute_present)
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
        else:
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoTokenizer.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_cached_tokenizer_has_minimum_calls_to_head(self):
        # Make sure we have cached the tokenizer.
        _ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
            self.assertEqual(counter.head_request_count, 1)
            self.assertEqual(counter.other_request_count, 0)