File size: 23,735 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import sys
import tempfile
import unittest
from collections import OrderedDict
from pathlib import Path

import pytest

import transformers
from transformers import BertConfig, GPT2Model, is_safetensors_available, is_torch_available
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
from transformers.testing_utils import (
    DUMMY_UNKNOWN_IDENTIFIER,
    SMALL_MODEL_IDENTIFIER,
    RequestCounter,
    require_torch,
    slow,
)

from ..bert.test_modeling_bert import BertModelTester


sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))

from test_module.custom_configuration import CustomConfig  # noqa E402


if is_torch_available():
    import torch
    from test_module.custom_modeling import CustomModel

    from transformers import (
        AutoBackbone,
        AutoConfig,
        AutoModel,
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
        AutoModelForSeq2SeqLM,
        AutoModelForSequenceClassification,
        AutoModelForTableQuestionAnswering,
        AutoModelForTokenClassification,
        AutoModelWithLMHead,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
        BertModel,
        FunnelBaseModel,
        FunnelModel,
        GPT2Config,
        GPT2LMHeadModel,
        ResNetBackbone,
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
        TapasConfig,
        TapasForQuestionAnswering,
        TimmBackbone,
    )
    from transformers.models.auto.modeling_auto import (
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        MODEL_MAPPING,
    )
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST


@require_torch
class AutoModelTest(unittest.TestCase):
    def setUp(self):
        transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0

    @slow
    def test_model_from_pretrained(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            # When using PyTorch checkpoint, the expected value is `8`. With `safetensors` checkpoint (if it is
            # installed), the expected value becomes `7`.
            EXPECTED_NUM_OF_UNEXPECTED_KEYS = 7 if is_safetensors_available() else 8
            self.assertEqual(len(loading_info["unexpected_keys"]), EXPECTED_NUM_OF_UNEXPECTED_KEYS)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)

    @slow
    def test_model_for_pretraining_from_pretrained(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
            # Only one value should not be initialized and in the missing keys.
            for key, value in loading_info.items():
                self.assertEqual(len(value), 0)

    @slow
    def test_lmhead_model_from_pretrained(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

    @slow
    def test_sequence_classification_model_from_pretrained(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

    @slow
    def test_question_answering_model_from_pretrained(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

    @slow
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

    @slow
    def test_token_classification_model_from_pretrained(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

    @slow
    def test_auto_backbone_timm_model_from_pretrained(self):
        # Configs can't be loaded for timm models
        model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True)

        with pytest.raises(ValueError):
            # We can't pass output_loading_info=True as we're loading from timm
            AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertIsInstance(model, TimmBackbone)

        # Check kwargs are correctly passed to the backbone
        model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_indices=(-1, -2))
        self.assertEqual(model.out_indices, (-1, -2))

        # Check out_features cannot be passed to Timm backbones
        with self.assertRaises(ValueError):
            _ = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_features=["stage1"])

    @slow
    def test_auto_backbone_from_pretrained(self):
        model = AutoBackbone.from_pretrained("microsoft/resnet-18")
        model, loading_info = AutoBackbone.from_pretrained("microsoft/resnet-18", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, ResNetBackbone)

        # Check kwargs are correctly passed to the backbone
        model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_indices=[-1, -2])
        self.assertEqual(model.out_indices, [-1, -2])
        self.assertEqual(model.out_features, ["stage4", "stage3"])

        model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_features=["stage2", "stage4"])
        self.assertEqual(model.out_indices, [2, 4])
        self.assertEqual(model.out_features, ["stage2", "stage4"])

    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)

    def test_from_identifier_from_model_type(self):
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
        self.assertIsInstance(model, RobertaForMaskedLM)
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)

    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

    def test_from_pretrained_dynamic_model_local(self):
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoModel.register(CustomConfig, CustomModel)

            config = CustomConfig(hidden_size=32)
            model = CustomModel(config)

            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)

                new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.equal(p1, p2))

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[CustomConfig]

    def test_from_pretrained_dynamic_model_distant(self):
        # If remote code is not set, we will time out when asking whether to load the model.
        with self.assertRaises(ValueError):
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model")
        # If remote code is disabled, we can't load this config.
        with self.assertRaises(ValueError):
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False)

        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

    def test_from_pretrained_dynamic_model_distant_with_ref(self):
        model = AutoModel.from_pretrained("hf-internal-testing/ref_to_test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained(
            "hf-internal-testing/ref_to_test_dynamic_model_with_util", trust_remote_code=True
        )
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

    def test_new_model_registration(self):
        AutoConfig.register("custom", CustomConfig)

        auto_classes = [
            AutoModel,
            AutoModelForCausalLM,
            AutoModelForMaskedLM,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSequenceClassification,
            AutoModelForTokenClassification,
        ]

        try:
            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, CustomModel)
                    auto_class.register(CustomConfig, CustomModel)
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, BertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
                    config = CustomConfig(**tiny_config.to_dict())
                    model = auto_class.from_config(config)
                    self.assertIsInstance(model, CustomModel)

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
                        # The model is a CustomModel but from the new dynamically imported class.
                        self.assertIsInstance(new_model, CustomModel)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            for mapping in (
                MODEL_MAPPING,
                MODEL_FOR_PRETRAINING_MAPPING,
                MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_MASKED_LM_MAPPING,
            ):
                if CustomConfig in mapping._extra_content:
                    del mapping._extra_content[CustomConfig]

    def test_from_pretrained_dynamic_model_conflict(self):
        class NewModelConfigLocal(BertConfig):
            model_type = "new-model"

        class NewModel(BertModel):
            config_class = NewModelConfigLocal

        try:
            AutoConfig.register("new-model", NewModelConfigLocal)
            AutoModel.register(NewModelConfigLocal, NewModel)
            # If remote code is not set, the default is to use local
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model")
            self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal")

            # If remote code is disabled, we load the local one.
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False)
            self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal")

            # If remote is enabled, we load from the Hub
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
            self.assertEqual(model.config.__class__.__name__, "NewModelConfig")

        finally:
            if "new-model" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["new-model"]
            if NewModelConfigLocal in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[NewModelConfigLocal]

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
        ):
            _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_tf_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only")

    def test_model_from_flax_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")

    def test_cached_model_has_minimum_calls_to_head(self):
        # Make sure we have cached the model.
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
            self.assertEqual(counter.head_request_count, 1)
            self.assertEqual(counter.other_request_count, 0)

        # With a sharded checkpoint
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
            self.assertEqual(counter.get_request_count, 0)
            self.assertEqual(counter.head_request_count, 1)
            self.assertEqual(counter.other_request_count, 0)

    def test_attr_not_existing(self):
        from transformers.models.auto.auto_factory import _LazyAutoMapping

        _CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")])
        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)

        with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"):
            _MODEL_MAPPING[BertConfig]

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel)

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model)