File size: 10,204 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import sys
import tempfile
import unittest
from pathlib import Path

import transformers
from transformers import (
    CONFIG_MAPPING,
    IMAGE_PROCESSOR_MAPPING,
    AutoConfig,
    AutoImageProcessor,
    CLIPConfig,
    CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER


sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))

from test_module.custom_configuration import CustomConfig  # noqa E402
from test_module.custom_image_processing import CustomImageProcessor  # noqa E402


class AutoImageProcessorTest(unittest.TestCase):
    def setUp(self):
        transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0

    def test_image_processor_from_model_shortcut(self):
        config = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
        self.assertIsInstance(config, CLIPImageProcessor)

    def test_image_processor_from_local_directory_from_key(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
            config_tmpfile = Path(tmpdirname) / "config.json"
            json.dump(
                {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
                open(processor_tmpfile, "w"),
            )
            json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))

            config = AutoImageProcessor.from_pretrained(tmpdirname)
            self.assertIsInstance(config, CLIPImageProcessor)

    def test_image_processor_from_local_directory_from_feature_extractor_key(self):
        # Ensure we can load the image processor from the feature extractor config
        with tempfile.TemporaryDirectory() as tmpdirname:
            processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
            config_tmpfile = Path(tmpdirname) / "config.json"
            json.dump(
                {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
                open(processor_tmpfile, "w"),
            )
            json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))

            config = AutoImageProcessor.from_pretrained(tmpdirname)
            self.assertIsInstance(config, CLIPImageProcessor)

    def test_image_processor_from_local_directory_from_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = CLIPConfig()

            # Create a dummy config file with image_proceesor_type
            processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
            config_tmpfile = Path(tmpdirname) / "config.json"
            json.dump(
                {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
                open(processor_tmpfile, "w"),
            )
            json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))

            # remove image_processor_type to make sure config.json alone is enough to load image processor locally
            config_dict = AutoImageProcessor.from_pretrained(tmpdirname).to_dict()

            config_dict.pop("image_processor_type")
            config = CLIPImageProcessor(**config_dict)

            # save in new folder
            model_config.save_pretrained(tmpdirname)
            config.save_pretrained(tmpdirname)

            config = AutoImageProcessor.from_pretrained(tmpdirname)

            # make sure private variable is not incorrectly saved
            dict_as_saved = json.loads(config.to_json_string())
            self.assertTrue("_processor_class" not in dict_as_saved)

        self.assertIsInstance(config, CLIPImageProcessor)

    def test_image_processor_from_local_file(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
            json.dump(
                {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
                open(processor_tmpfile, "w"),
            )

            config = AutoImageProcessor.from_pretrained(processor_tmpfile)
            self.assertIsInstance(config, CLIPImageProcessor)

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "clip-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoImageProcessor.from_pretrained("clip-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoImageProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_image_processor_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.",
        ):
            _ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model")

    def test_from_pretrained_dynamic_image_processor(self):
        # If remote code is not set, we will time out when asking whether to load the model.
        with self.assertRaises(ValueError):
            image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
        # If remote code is disabled, we can't load this config.
        with self.assertRaises(ValueError):
            image_processor = AutoImageProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
            )

        image_processor = AutoImageProcessor.from_pretrained(
            "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
        )
        self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")

        # Test image processor can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            image_processor.save_pretrained(tmp_dir)
            reloaded_image_processor = AutoImageProcessor.from_pretrained(tmp_dir, trust_remote_code=True)
        self.assertEqual(reloaded_image_processor.__class__.__name__, "NewImageProcessor")

    def test_new_image_processor_registration(self):
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoImageProcessor.register(CustomConfig, CustomImageProcessor)
            # Trying to register something existing in the Transformers library will raise an error
            with self.assertRaises(ValueError):
                AutoImageProcessor.register(CLIPConfig, CLIPImageProcessor)

            with tempfile.TemporaryDirectory() as tmpdirname:
                processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
                config_tmpfile = Path(tmpdirname) / "config.json"
                json.dump(
                    {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
                    open(processor_tmpfile, "w"),
                )
                json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))

                image_processor = CustomImageProcessor.from_pretrained(tmpdirname)

            # Now that the config is registered, it can be used as any other config with the auto-API
            with tempfile.TemporaryDirectory() as tmp_dir:
                image_processor.save_pretrained(tmp_dir)
                new_image_processor = AutoImageProcessor.from_pretrained(tmp_dir)
                self.assertIsInstance(new_image_processor, CustomImageProcessor)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
                del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]

    def test_from_pretrained_dynamic_image_processor_conflict(self):
        class NewImageProcessor(CLIPImageProcessor):
            is_local = True

        try:
            AutoConfig.register("custom", CustomConfig)
            AutoImageProcessor.register(CustomConfig, NewImageProcessor)
            # If remote code is not set, the default is to use local
            image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
            self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
            self.assertTrue(image_processor.is_local)

            # If remote code is disabled, we load the local one.
            image_processor = AutoImageProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
            )
            self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
            self.assertTrue(image_processor.is_local)

            # If remote is enabled, we load from the Hub
            image_processor = AutoImageProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
            )
            self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
            self.assertTrue(not hasattr(image_processor, "is_local"))

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
                del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]