File size: 22,777 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Post-processing utilities for question answering.
"""
import collections
import json
import logging
import os
from typing import Optional, Tuple

import numpy as np
from tqdm.auto import tqdm


logger = logging.getLogger(__name__)


def postprocess_qa_predictions(
    examples,
    features,
    predictions: Tuple[np.ndarray, np.ndarray],
    version_2_with_negative: bool = False,
    n_best_size: int = 20,
    max_answer_length: int = 30,
    null_score_diff_threshold: float = 0.0,
    output_dir: Optional[str] = None,
    prefix: Optional[str] = None,
    log_level: Optional[int] = logging.WARNING,
):
    """
    Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the
    original contexts. This is the base postprocessing functions for models that only return start and end logits.

    Args:
        examples: The non-preprocessed dataset (see the main script for more information).
        features: The processed dataset (see the main script for more information).
        predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
            The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
            first dimension must match the number of elements of :obj:`features`.
        version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the underlying dataset contains examples with no answers.
        n_best_size (:obj:`int`, `optional`, defaults to 20):
            The total number of n-best predictions to generate when looking for an answer.
        max_answer_length (:obj:`int`, `optional`, defaults to 30):
            The maximum length of an answer that can be generated. This is needed because the start and end predictions
            are not conditioned on one another.
        null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0):
            The threshold used to select the null answer: if the best answer has a score that is less than the score of
            the null answer minus this threshold, the null answer is selected for this example (note that the score of
            the null answer for an example giving several features is the minimum of the scores for the null answer on
            each feature: all features must be aligned on the fact they `want` to predict a null answer).

            Only useful when :obj:`version_2_with_negative` is :obj:`True`.
        output_dir (:obj:`str`, `optional`):
            If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
            :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
            answers, are saved in `output_dir`.
        prefix (:obj:`str`, `optional`):
            If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
        log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
            ``logging`` log level (e.g., ``logging.WARNING``)
    """
    if len(predictions) != 2:
        raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
    all_start_logits, all_end_logits = predictions

    if len(predictions[0]) != len(features):
        raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")

    # Build a map example to its corresponding features.
    example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
    features_per_example = collections.defaultdict(list)
    for i, feature in enumerate(features):
        features_per_example[example_id_to_index[feature["example_id"]]].append(i)

    # The dictionaries we have to fill.
    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    if version_2_with_negative:
        scores_diff_json = collections.OrderedDict()

    # Logging.
    logger.setLevel(log_level)
    logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")

    # Let's loop over all the examples!
    for example_index, example in enumerate(tqdm(examples)):
        # Those are the indices of the features associated to the current example.
        feature_indices = features_per_example[example_index]

        min_null_prediction = None
        prelim_predictions = []

        # Looping through all the features associated to the current example.
        for feature_index in feature_indices:
            # We grab the predictions of the model for this feature.
            start_logits = all_start_logits[feature_index]
            end_logits = all_end_logits[feature_index]
            # This is what will allow us to map some the positions in our logits to span of texts in the original
            # context.
            offset_mapping = features[feature_index]["offset_mapping"]
            # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
            # available in the current feature.
            token_is_max_context = features[feature_index].get("token_is_max_context", None)

            # Update minimum null prediction.
            feature_null_score = start_logits[0] + end_logits[0]
            if min_null_prediction is None or min_null_prediction["score"] > feature_null_score:
                min_null_prediction = {
                    "offsets": (0, 0),
                    "score": feature_null_score,
                    "start_logit": start_logits[0],
                    "end_logit": end_logits[0],
                }

            # Go through all possibilities for the `n_best_size` greater start and end logits.
            start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
            end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
                    # to part of the input_ids that are not in the context.
                    if (
                        start_index >= len(offset_mapping)
                        or end_index >= len(offset_mapping)
                        or offset_mapping[start_index] is None
                        or len(offset_mapping[start_index]) < 2
                        or offset_mapping[end_index] is None
                        or len(offset_mapping[end_index]) < 2
                    ):
                        continue
                    # Don't consider answers with a length that is either < 0 or > max_answer_length.
                    if end_index < start_index or end_index - start_index + 1 > max_answer_length:
                        continue
                    # Don't consider answer that don't have the maximum context available (if such information is
                    # provided).
                    if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
                        continue

                    prelim_predictions.append(
                        {
                            "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
                            "score": start_logits[start_index] + end_logits[end_index],
                            "start_logit": start_logits[start_index],
                            "end_logit": end_logits[end_index],
                        }
                    )
        if version_2_with_negative and min_null_prediction is not None:
            # Add the minimum null prediction
            prelim_predictions.append(min_null_prediction)
            null_score = min_null_prediction["score"]

        # Only keep the best `n_best_size` predictions.
        predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]

        # Add back the minimum null prediction if it was removed because of its low score.
        if (
            version_2_with_negative
            and min_null_prediction is not None
            and not any(p["offsets"] == (0, 0) for p in predictions)
        ):
            predictions.append(min_null_prediction)

        # Use the offsets to gather the answer text in the original context.
        context = example["context"]
        for pred in predictions:
            offsets = pred.pop("offsets")
            pred["text"] = context[offsets[0] : offsets[1]]

        # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
        # failure.
        if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
            predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})

        # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
        # the LogSumExp trick).
        scores = np.array([pred.pop("score") for pred in predictions])
        exp_scores = np.exp(scores - np.max(scores))
        probs = exp_scores / exp_scores.sum()

        # Include the probabilities in our predictions.
        for prob, pred in zip(probs, predictions):
            pred["probability"] = prob

        # Pick the best prediction. If the null answer is not possible, this is easy.
        if not version_2_with_negative:
            all_predictions[example["id"]] = predictions[0]["text"]
        else:
            # Otherwise we first need to find the best non-empty prediction.
            i = 0
            while predictions[i]["text"] == "":
                i += 1
            best_non_null_pred = predictions[i]

            # Then we compare to the null prediction using the threshold.
            score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
            scores_diff_json[example["id"]] = float(score_diff)  # To be JSON-serializable.
            if score_diff > null_score_diff_threshold:
                all_predictions[example["id"]] = ""
            else:
                all_predictions[example["id"]] = best_non_null_pred["text"]

        # Make `predictions` JSON-serializable by casting np.float back to float.
        all_nbest_json[example["id"]] = [
            {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
            for pred in predictions
        ]

    # If we have an output_dir, let's save all those dicts.
    if output_dir is not None:
        if not os.path.isdir(output_dir):
            raise EnvironmentError(f"{output_dir} is not a directory.")

        prediction_file = os.path.join(
            output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
        )
        nbest_file = os.path.join(
            output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
        )
        if version_2_with_negative:
            null_odds_file = os.path.join(
                output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
            )

        logger.info(f"Saving predictions to {prediction_file}.")
        with open(prediction_file, "w") as writer:
            writer.write(json.dumps(all_predictions, indent=4) + "\n")
        logger.info(f"Saving nbest_preds to {nbest_file}.")
        with open(nbest_file, "w") as writer:
            writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
        if version_2_with_negative:
            logger.info(f"Saving null_odds to {null_odds_file}.")
            with open(null_odds_file, "w") as writer:
                writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

    return all_predictions


def postprocess_qa_predictions_with_beam_search(
    examples,
    features,
    predictions: Tuple[np.ndarray, np.ndarray],
    version_2_with_negative: bool = False,
    n_best_size: int = 20,
    max_answer_length: int = 30,
    start_n_top: int = 5,
    end_n_top: int = 5,
    output_dir: Optional[str] = None,
    prefix: Optional[str] = None,
    log_level: Optional[int] = logging.WARNING,
):
    """
    Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the
    original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as
    cls token predictions.

    Args:
        examples: The non-preprocessed dataset (see the main script for more information).
        features: The processed dataset (see the main script for more information).
        predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
            The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
            first dimension must match the number of elements of :obj:`features`.
        version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not the underlying dataset contains examples with no answers.
        n_best_size (:obj:`int`, `optional`, defaults to 20):
            The total number of n-best predictions to generate when looking for an answer.
        max_answer_length (:obj:`int`, `optional`, defaults to 30):
            The maximum length of an answer that can be generated. This is needed because the start and end predictions
            are not conditioned on one another.
        start_n_top (:obj:`int`, `optional`, defaults to 5):
            The number of top start logits too keep when searching for the :obj:`n_best_size` predictions.
        end_n_top (:obj:`int`, `optional`, defaults to 5):
            The number of top end logits too keep when searching for the :obj:`n_best_size` predictions.
        output_dir (:obj:`str`, `optional`):
            If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
            :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
            answers, are saved in `output_dir`.
        prefix (:obj:`str`, `optional`):
            If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
        log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
            ``logging`` log level (e.g., ``logging.WARNING``)
    """
    if len(predictions) != 5:
        raise ValueError("`predictions` should be a tuple with five elements.")
    start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions

    if len(predictions[0]) != len(features):
        raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")

    # Build a map example to its corresponding features.
    example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
    features_per_example = collections.defaultdict(list)
    for i, feature in enumerate(features):
        features_per_example[example_id_to_index[feature["example_id"]]].append(i)

    # The dictionaries we have to fill.
    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict() if version_2_with_negative else None

    # Logging.
    logger.setLevel(log_level)
    logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")

    # Let's loop over all the examples!
    for example_index, example in enumerate(tqdm(examples)):
        # Those are the indices of the features associated to the current example.
        feature_indices = features_per_example[example_index]

        min_null_score = None
        prelim_predictions = []

        # Looping through all the features associated to the current example.
        for feature_index in feature_indices:
            # We grab the predictions of the model for this feature.
            start_log_prob = start_top_log_probs[feature_index]
            start_indexes = start_top_index[feature_index]
            end_log_prob = end_top_log_probs[feature_index]
            end_indexes = end_top_index[feature_index]
            feature_null_score = cls_logits[feature_index]
            # This is what will allow us to map some the positions in our logits to span of texts in the original
            # context.
            offset_mapping = features[feature_index]["offset_mapping"]
            # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
            # available in the current feature.
            token_is_max_context = features[feature_index].get("token_is_max_context", None)

            # Update minimum null prediction
            if min_null_score is None or feature_null_score < min_null_score:
                min_null_score = feature_null_score

            # Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits.
            for i in range(start_n_top):
                for j in range(end_n_top):
                    start_index = int(start_indexes[i])
                    j_index = i * end_n_top + j
                    end_index = int(end_indexes[j_index])
                    # Don't consider out-of-scope answers (last part of the test should be unnecessary because of the
                    # p_mask but let's not take any risk)
                    if (
                        start_index >= len(offset_mapping)
                        or end_index >= len(offset_mapping)
                        or offset_mapping[start_index] is None
                        or len(offset_mapping[start_index]) < 2
                        or offset_mapping[end_index] is None
                        or len(offset_mapping[end_index]) < 2
                    ):
                        continue

                    # Don't consider answers with a length negative or > max_answer_length.
                    if end_index < start_index or end_index - start_index + 1 > max_answer_length:
                        continue
                    # Don't consider answer that don't have the maximum context available (if such information is
                    # provided).
                    if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
                        continue
                    prelim_predictions.append(
                        {
                            "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
                            "score": start_log_prob[i] + end_log_prob[j_index],
                            "start_log_prob": start_log_prob[i],
                            "end_log_prob": end_log_prob[j_index],
                        }
                    )

        # Only keep the best `n_best_size` predictions.
        predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]

        # Use the offsets to gather the answer text in the original context.
        context = example["context"]
        for pred in predictions:
            offsets = pred.pop("offsets")
            pred["text"] = context[offsets[0] : offsets[1]]

        # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
        # failure.
        if len(predictions) == 0:
            # Without predictions min_null_score is going to be None and None will cause an exception later
            min_null_score = -2e-6
            predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": min_null_score})

        # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
        # the LogSumExp trick).
        scores = np.array([pred.pop("score") for pred in predictions])
        exp_scores = np.exp(scores - np.max(scores))
        probs = exp_scores / exp_scores.sum()

        # Include the probabilities in our predictions.
        for prob, pred in zip(probs, predictions):
            pred["probability"] = prob

        # Pick the best prediction and set the probability for the null answer.
        all_predictions[example["id"]] = predictions[0]["text"]
        if version_2_with_negative:
            scores_diff_json[example["id"]] = float(min_null_score)

        # Make `predictions` JSON-serializable by casting np.float back to float.
        all_nbest_json[example["id"]] = [
            {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
            for pred in predictions
        ]

    # If we have an output_dir, let's save all those dicts.
    if output_dir is not None:
        if not os.path.isdir(output_dir):
            raise EnvironmentError(f"{output_dir} is not a directory.")

        prediction_file = os.path.join(
            output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
        )
        nbest_file = os.path.join(
            output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
        )
        if version_2_with_negative:
            null_odds_file = os.path.join(
                output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
            )

        logger.info(f"Saving predictions to {prediction_file}.")
        with open(prediction_file, "w") as writer:
            writer.write(json.dumps(all_predictions, indent=4) + "\n")
        logger.info(f"Saving nbest_preds to {nbest_file}.")
        with open(nbest_file, "w") as writer:
            writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
        if version_2_with_negative:
            logger.info(f"Saving null_odds to {null_odds_file}.")
            with open(null_odds_file, "w") as writer:
                writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

    return all_predictions, scores_diff_json