Spaces:
Runtime error
Runtime error
File size: 2,364 Bytes
96e9536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# Simple VQGAN CLIP
Author: @ErwannMillon
This is a very simple VQGAN-CLIP implementation that was built as a part of the <a href= "https://github.com/ErwannMillon/face-editor"> Face Editor project </a> . This simplified version allows you to generate or edit images using text with just three lines of code. For a more full featured implementation with masking, more advanced losses, and a full GUI, check out the Face Editor project.
By default this uses a CelebA checkpoint (for generating/editing faces), but also has an imagenet checkpoint that can be loaded by specifying vqgan_config and vqgan_checkpoint when instantiating VQGAN_CLIP.
Learning rate and iterations can be set by modifying vqgan_clip.lr and vqgan_clip.iterations .
You can edit images by passing `image_path` to the generate function.
See the generate function's docstring to learn more about how to format prompts.
## Usage
The easiest way to test this out is by <a href="https://colab.research.google.com/drive/1Ez4D1J6-hVkmlXeR5jBPWYyu6CLA9Yor?usp=sharing
">using the Colab demo</a>
To install locally:
- Clone this repo
- Install git-lfs (ubuntu: sudo apt-get install git-lfs , MacOS: brew install git-lfs)
In the root of the repo run:
```
conda create -n vqganclip python=3.8
conda activate vqganclip
git-lfs install
git clone https://huggingface.co/datasets/erwann/face_editor_model_ckpt model_checkpoints
pip install -r requirements.txt
```
### Generate new images
```
from VQGAN_CLIP import VQGAN_CLIP
vqgan_clip = VQGAN_CLIP()
vqgan_clip.generate("a picture of a smiling woman")
```
### Edit an image
To get a test image, run
`git clone https://huggingface.co/datasets/erwann/vqgan-clip-pic test_images`
To edit:
```
from VQGAN_CLIP import VQGAN_CLIP
vqgan_clip = VQGAN_CLIP()
vqgan_clip.lr = .07
vqgan_clip.iterations = 15
vqgan_clip.generate(
pos_prompts= ["a picture of a beautiful asian woman", "a picture of a woman from Japan"],
neg_prompts=["a picture of an Indian person", "a picture of a white person"],
image_path="./test_images/face.jpeg",
show_intermediate=True,
save_intermediate=True,
)
```
### Make an animation from the most recent generation
`vqgan_clip.make_animation()`
## Features:
- Positive and negative prompts
- Multiple prompts
- Prompt Weights
- Creating GIF animations of the transformations
- Wandb logging
|