Spaces:
Runtime error
Runtime error
File size: 21,319 Bytes
96e9536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import sys
from unittest.mock import patch
import torch
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device
from transformers.utils import is_apex_available
SRC_DIRS = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-generation",
"text-classification",
"token-classification",
"language-modeling",
"multiple-choice",
"question-answering",
"summarization",
"translation",
"image-classification",
"speech-recognition",
"audio-classification",
"speech-pretraining",
"image-pretraining",
"semantic-segmentation",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_audio_classification
import run_clm
import run_generation
import run_glue
import run_image_classification
import run_mae
import run_mlm
import run_ner
import run_qa as run_squad
import run_semantic_segmentation
import run_seq2seq_qa as run_squad_seq2seq
import run_speech_recognition_ctc
import run_speech_recognition_ctc_adapter
import run_speech_recognition_seq2seq
import run_summarization
import run_swag
import run_translation
import run_wav2vec2_pretraining_no_trainer
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_results(output_dir):
results = {}
path = os.path.join(output_dir, "all_results.json")
if os.path.exists(path):
with open(path, "r") as f:
results = json.load(f)
else:
raise ValueError(f"can't find {path}")
return results
def is_cuda_and_apex_available():
is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
return is_using_cuda and is_apex_available()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class ExamplesTests(TestCasePlus):
def test_run_glue(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_glue.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
def test_run_clm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
if torch_device == "cpu":
testargs.append("--use_cpu")
with patch.object(sys, "argv", testargs):
run_clm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 100)
def test_run_clm_config_overrides(self):
# test that config_overrides works, despite the misleading dumps of default un-updated
# config via tokenizer
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_type gpt2
--tokenizer_name gpt2
--train_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--config_overrides n_embd=10,n_head=2
""".split()
if torch_device == "cpu":
testargs.append("--use_cpu")
logger = run_clm.logger
with patch.object(sys, "argv", testargs):
with CaptureLogger(logger) as cl:
run_clm.main()
self.assertIn('"n_embd": 10', cl.out)
self.assertIn('"n_head": 2', cl.out)
def test_run_mlm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--prediction_loss_only
--num_train_epochs=1
""".split()
if torch_device == "cpu":
testargs.append("--use_cpu")
with patch.object(sys, "argv", testargs):
run_mlm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 42)
def test_run_ner(self):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
epochs = 7 if get_gpu_count() > 1 else 2
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
if torch_device == "cpu":
testargs.append("--use_cpu")
with patch.object(sys, "argv", testargs):
run_ner.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
self.assertLess(result["eval_loss"], 0.5)
def test_run_squad(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_squad.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_f1"], 30)
self.assertGreaterEqual(result["eval_exact"], 30)
def test_run_squad_seq2seq(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_seq2seq_qa.py
--model_name_or_path t5-small
--context_column context
--question_column question
--answer_column answers
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(sys, "argv", testargs):
run_squad_seq2seq.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_f1"], 30)
self.assertGreaterEqual(result["eval_exact"], 30)
def test_run_swag(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_swag.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=20
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_swag.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_generation(self):
testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
if is_cuda_and_apex_available():
testargs.append("--fp16")
model_type, model_name = (
"--model_type=gpt2",
"--model_name_or_path=sshleifer/tiny-gpt2",
)
with patch.object(sys, "argv", testargs + [model_type, model_name]):
result = run_generation.main()
self.assertGreaterEqual(len(result[0]), 10)
@slow
def test_run_summarization(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(sys, "argv", testargs):
run_summarization.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_rouge1"], 10)
self.assertGreaterEqual(result["eval_rouge2"], 2)
self.assertGreaterEqual(result["eval_rougeL"], 7)
self.assertGreaterEqual(result["eval_rougeLsum"], 7)
@slow
def test_run_translation(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_translation.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
--source_lang en_XX
--target_lang ro_RO
""".split()
with patch.object(sys, "argv", testargs):
run_translation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_bleu"], 30)
def test_run_image_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_image_classification.py
--output_dir {tmp_dir}
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--dataloader_num_workers 16
--metric_for_best_model accuracy
--max_steps 10
--train_val_split 0.1
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_image_classification.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_run_speech_recognition_ctc(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_ctc.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_ctc.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_speech_recognition_ctc_adapter(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_ctc_adapter.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--target_language tur
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_ctc_adapter.main()
result = get_results(tmp_dir)
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "./adapter.tur.safetensors")))
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_speech_recognition_seq2seq(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_seq2seq.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 4
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_seq2seq.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_audio_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_audio_classification.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name anton-l/superb_demo
--dataset_config_name ks
--train_split_name test
--eval_split_name test
--audio_column_name audio
--label_column_name label
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--num_train_epochs 10
--max_steps 50
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_audio_classification.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_wav2vec2_pretraining(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_wav2vec2_pretraining_no_trainer.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_names clean
--dataset_split_names validation
--learning_rate 1e-4
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--preprocessing_num_workers 16
--max_train_steps 2
--validation_split_percentage 5
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_wav2vec2_pretraining_no_trainer.main()
model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
self.assertIsNotNone(model)
def test_run_vit_mae_pretraining(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mae.py
--output_dir {tmp_dir}
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--dataloader_num_workers 16
--metric_for_best_model accuracy
--max_steps 10
--train_val_split 0.1
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_mae.main()
model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
self.assertIsNotNone(model)
def test_run_semantic_segmentation(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_semantic_segmentation.py
--output_dir {tmp_dir}
--dataset_name huggingface/semantic-segmentation-test-sample
--do_train
--do_eval
--remove_unused_columns False
--overwrite_output_dir True
--max_steps 10
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--seed 32
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_semantic_segmentation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1)
|