File size: 6,864 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# Speech Recognition Pre-Training


## Wav2Vec2 Speech Pre-Training

The script [`run_speech_wav2vec2_pretraining_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py) can be used to pre-train a [Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html?highlight=wav2vec2) model from scratch.

In the script [`run_speech_wav2vec2_pretraining_no_trainer`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py), a Wav2Vec2 model is pre-trained on audio data alone using [Wav2Vec2's contrastive loss objective](https://arxiv.org/abs/2006.11477).

The following examples show how to fine-tune a `"base"`-sized Wav2Vec2 model as well as a `"large"`-sized Wav2Vec2 model using [`accelerate`](https://github.com/huggingface/accelerate).


---
**NOTE 1**

Wav2Vec2's pre-training is known to be quite unstable.
It is advised to do a couple of test runs with a smaller dataset,
*i.e.* `--dataset_config_names clean clean`, `--dataset_split_names validation test`
to find good hyper-parameters for `learning_rate`, `batch_size`, `num_warmup_steps`,
and the optimizer.
A good metric to observe during training is the gradient norm which should ideally be between 0.5 and 2.

---

---
**NOTE 2**

When training a model on large datasets it is recommended to run the data preprocessing 
in a first run in a **non-distributed** mode via `--preprocessing_only` so that 
when running the model in **distributed** mode in a second step the preprocessed data
can easily be loaded on each distributed device.

---

### Demo

In this demo run we pre-train a `"base-sized"` Wav2Vec2 model simply only on the validation
and test data of [librispeech_asr](https://huggingface.co/datasets/librispeech_asr).

The demo is run on two Titan RTX (24 GB RAM each). In case you have less RAM available 
per device, consider reducing `--batch_size` and/or the `--max_duration_in_seconds`.


```bash
accelerate launch run_wav2vec2_pretraining_no_trainer.py \
	--dataset_name="librispeech_asr" \
	--dataset_config_names clean clean \
	--dataset_split_names validation test \
	--model_name_or_path="patrickvonplaten/wav2vec2-base-v2" \
	--output_dir="./wav2vec2-pretrained-demo" \
	--max_train_steps="20000" \
	--num_warmup_steps="32000" \
	--gradient_accumulation_steps="8" \
	--learning_rate="0.005" \
	--weight_decay="0.01" \
	--max_duration_in_seconds="20.0" \
	--min_duration_in_seconds="2.0" \
	--logging_steps="1" \
	--saving_steps="10000" \
	--per_device_train_batch_size="8" \
	--per_device_eval_batch_size="8" \
	--adam_beta1="0.9" \
	--adam_beta2="0.98" \
	--adam_epsilon="1e-06" \
	--gradient_checkpointing \
	--mask_time_prob="0.65" \
	--mask_time_length="10"
```

The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/wav2vec2-pretrained-demo/reports/Wav2Vec2-PreTraining-Demo-Run--VmlldzoxMDk3MjAw?accessToken=oa05s1y57lizo2ocxy3k01g6db1u4pt8m6ur2n8nl4cb0ug02ms2cw313kb8ruch).

### Base

To pre-train `"base-sized"` Wav2Vec2 model, *e.g.* [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) 
on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr), the following command can be run:

```bash
accelerate launch run_wav2vec2_pretraining_no_trainer.py \
	--dataset_name=librispeech_asr \
	--dataset_config_names clean clean other \
	--dataset_split_names train.100 train.360 train.500 \
	--model_name_or_path="patrickvonplaten/wav2vec2-base-v2" \
	--output_dir="./wav2vec2-pretrained-demo" \
	--max_train_steps="200000" \
	--num_warmup_steps="32000" \
	--gradient_accumulation_steps="4" \
	--learning_rate="0.001" \
	--weight_decay="0.01" \
	--max_duration_in_seconds="20.0" \
	--min_duration_in_seconds="2.0" \
	--logging_steps="1" \
	--saving_steps="10000" \
	--per_device_train_batch_size="8" \
	--per_device_eval_batch_size="8" \
	--adam_beta1="0.9" \
	--adam_beta2="0.98" \
	--adam_epsilon="1e-06" \
	--gradient_checkpointing \
	--mask_time_prob="0.65" \
	--mask_time_length="10"
```

The experiment was run on 8 GPU V100 (16 GB RAM each) for 4 days. 
In case you have more than 8 GPUs available for a higher effective `batch_size`,
it is recommended to increase the `learning_rate` to `0.005` for faster convergence.

The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/test/reports/Wav2Vec2-Base--VmlldzoxMTUyODQ0?accessToken=rg6e8u9yizx964k8q47zctq1m4afpvtn1i3qi9exgdmzip6xwkfzvagfajpzj55n) and the checkpoint pretrained for 85,000 steps can be accessed [here](https://huggingface.co/patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps)


### Large

To pre-train `"large-sized"` Wav2Vec2 model, *e.g.* [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), 
on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr), the following command can be run:

```bash
accelerate launch run_wav2vec2_pretraining_no_trainer.py \ 
	--dataset_name=librispeech_asr \
	--dataset_config_names clean clean other \
	--dataset_split_names train.100 train.360 train.500 \
	--output_dir=./test \
	--max_train_steps=200000 \
	--num_warmup_steps=32000 \
	--gradient_accumulation_steps=8 \
	--learning_rate=0.001 \
	--weight_decay=0.01 \
	--max_duration_in_seconds=20.0 \
	--min_duration_in_seconds=2.0 \
	--model_name_or_path=./ 
	--logging_steps=1 \
	--saving_steps=10000 \
	--per_device_train_batch_size=2 \
	--per_device_eval_batch_size=4 \
	--adam_beta1=0.9 \
	--adam_beta2=0.98 \
	--adam_epsilon=1e-06 \
	--gradient_checkpointing \
	--mask_time_prob=0.65 \
	--mask_time_length=10
```

The experiment was run on 8 GPU V100 (16 GB RAM each) for 7 days. 
In case you have more than 8 GPUs available for a higher effective `batch_size`,
it is recommended to increase the `learning_rate` to `0.005` for faster convergence.

The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/pretraining-wav2vec2/reports/Wav2Vec2-Large--VmlldzoxMTAwODM4?accessToken=wm3qzcnldrwsa31tkvf2pdmilw3f63d4twtffs86ou016xjbyilh55uoi3mo1qzc) and the checkpoint pretrained for 120,000 steps can be accessed [here](https://huggingface.co/patrickvonplaten/wav2vec2-large-repro-960h-libri-120k-steps)