Spaces:
Runtime error
Runtime error
File size: 6,864 Bytes
96e9536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Speech Recognition Pre-Training
## Wav2Vec2 Speech Pre-Training
The script [`run_speech_wav2vec2_pretraining_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py) can be used to pre-train a [Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html?highlight=wav2vec2) model from scratch.
In the script [`run_speech_wav2vec2_pretraining_no_trainer`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py), a Wav2Vec2 model is pre-trained on audio data alone using [Wav2Vec2's contrastive loss objective](https://arxiv.org/abs/2006.11477).
The following examples show how to fine-tune a `"base"`-sized Wav2Vec2 model as well as a `"large"`-sized Wav2Vec2 model using [`accelerate`](https://github.com/huggingface/accelerate).
---
**NOTE 1**
Wav2Vec2's pre-training is known to be quite unstable.
It is advised to do a couple of test runs with a smaller dataset,
*i.e.* `--dataset_config_names clean clean`, `--dataset_split_names validation test`
to find good hyper-parameters for `learning_rate`, `batch_size`, `num_warmup_steps`,
and the optimizer.
A good metric to observe during training is the gradient norm which should ideally be between 0.5 and 2.
---
---
**NOTE 2**
When training a model on large datasets it is recommended to run the data preprocessing
in a first run in a **non-distributed** mode via `--preprocessing_only` so that
when running the model in **distributed** mode in a second step the preprocessed data
can easily be loaded on each distributed device.
---
### Demo
In this demo run we pre-train a `"base-sized"` Wav2Vec2 model simply only on the validation
and test data of [librispeech_asr](https://huggingface.co/datasets/librispeech_asr).
The demo is run on two Titan RTX (24 GB RAM each). In case you have less RAM available
per device, consider reducing `--batch_size` and/or the `--max_duration_in_seconds`.
```bash
accelerate launch run_wav2vec2_pretraining_no_trainer.py \
--dataset_name="librispeech_asr" \
--dataset_config_names clean clean \
--dataset_split_names validation test \
--model_name_or_path="patrickvonplaten/wav2vec2-base-v2" \
--output_dir="./wav2vec2-pretrained-demo" \
--max_train_steps="20000" \
--num_warmup_steps="32000" \
--gradient_accumulation_steps="8" \
--learning_rate="0.005" \
--weight_decay="0.01" \
--max_duration_in_seconds="20.0" \
--min_duration_in_seconds="2.0" \
--logging_steps="1" \
--saving_steps="10000" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="8" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--adam_epsilon="1e-06" \
--gradient_checkpointing \
--mask_time_prob="0.65" \
--mask_time_length="10"
```
The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/wav2vec2-pretrained-demo/reports/Wav2Vec2-PreTraining-Demo-Run--VmlldzoxMDk3MjAw?accessToken=oa05s1y57lizo2ocxy3k01g6db1u4pt8m6ur2n8nl4cb0ug02ms2cw313kb8ruch).
### Base
To pre-train `"base-sized"` Wav2Vec2 model, *e.g.* [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base)
on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr), the following command can be run:
```bash
accelerate launch run_wav2vec2_pretraining_no_trainer.py \
--dataset_name=librispeech_asr \
--dataset_config_names clean clean other \
--dataset_split_names train.100 train.360 train.500 \
--model_name_or_path="patrickvonplaten/wav2vec2-base-v2" \
--output_dir="./wav2vec2-pretrained-demo" \
--max_train_steps="200000" \
--num_warmup_steps="32000" \
--gradient_accumulation_steps="4" \
--learning_rate="0.001" \
--weight_decay="0.01" \
--max_duration_in_seconds="20.0" \
--min_duration_in_seconds="2.0" \
--logging_steps="1" \
--saving_steps="10000" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="8" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--adam_epsilon="1e-06" \
--gradient_checkpointing \
--mask_time_prob="0.65" \
--mask_time_length="10"
```
The experiment was run on 8 GPU V100 (16 GB RAM each) for 4 days.
In case you have more than 8 GPUs available for a higher effective `batch_size`,
it is recommended to increase the `learning_rate` to `0.005` for faster convergence.
The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/test/reports/Wav2Vec2-Base--VmlldzoxMTUyODQ0?accessToken=rg6e8u9yizx964k8q47zctq1m4afpvtn1i3qi9exgdmzip6xwkfzvagfajpzj55n) and the checkpoint pretrained for 85,000 steps can be accessed [here](https://huggingface.co/patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps)
### Large
To pre-train `"large-sized"` Wav2Vec2 model, *e.g.* [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60),
on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr), the following command can be run:
```bash
accelerate launch run_wav2vec2_pretraining_no_trainer.py \
--dataset_name=librispeech_asr \
--dataset_config_names clean clean other \
--dataset_split_names train.100 train.360 train.500 \
--output_dir=./test \
--max_train_steps=200000 \
--num_warmup_steps=32000 \
--gradient_accumulation_steps=8 \
--learning_rate=0.001 \
--weight_decay=0.01 \
--max_duration_in_seconds=20.0 \
--min_duration_in_seconds=2.0 \
--model_name_or_path=./
--logging_steps=1 \
--saving_steps=10000 \
--per_device_train_batch_size=2 \
--per_device_eval_batch_size=4 \
--adam_beta1=0.9 \
--adam_beta2=0.98 \
--adam_epsilon=1e-06 \
--gradient_checkpointing \
--mask_time_prob=0.65 \
--mask_time_length=10
```
The experiment was run on 8 GPU V100 (16 GB RAM each) for 7 days.
In case you have more than 8 GPUs available for a higher effective `batch_size`,
it is recommended to increase the `learning_rate` to `0.005` for faster convergence.
The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/pretraining-wav2vec2/reports/Wav2Vec2-Large--VmlldzoxMTAwODM4?accessToken=wm3qzcnldrwsa31tkvf2pdmilw3f63d4twtffs86ou016xjbyilh55uoi3mo1qzc) and the checkpoint pretrained for 120,000 steps can be accessed [here](https://huggingface.co/patrickvonplaten/wav2vec2-large-repro-960h-libri-120k-steps)
|