File size: 21,115 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import json
import logging
import os
import random
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional

import evaluate
import numpy as np
import torch
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from PIL import Image
from torch import nn
from torchvision import transforms
from torchvision.transforms import functional

import transformers
from transformers import (
    AutoConfig,
    AutoImageProcessor,
    AutoModelForSemanticSegmentation,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version


""" Finetuning any 🤗 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation leveraging the Trainer API."""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.33.0.dev0")

require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")


def pad_if_smaller(img, size, fill=0):
    size = (size, size) if isinstance(size, int) else size
    original_width, original_height = img.size
    pad_height = size[1] - original_height if original_height < size[1] else 0
    pad_width = size[0] - original_width if original_width < size[0] else 0
    img = functional.pad(img, (0, 0, pad_width, pad_height), fill=fill)
    return img


class Compose:
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class Identity:
    def __init__(self):
        pass

    def __call__(self, image, target):
        return image, target


class Resize:
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = functional.resize(image, self.size)
        target = functional.resize(target, self.size, interpolation=transforms.InterpolationMode.NEAREST)
        return image, target


class RandomResize:
    def __init__(self, min_size, max_size=None):
        self.min_size = min_size
        if max_size is None:
            max_size = min_size
        self.max_size = max_size

    def __call__(self, image, target):
        size = random.randint(self.min_size, self.max_size)
        image = functional.resize(image, size)
        target = functional.resize(target, size, interpolation=transforms.InterpolationMode.NEAREST)
        return image, target


class RandomCrop:
    def __init__(self, size):
        self.size = size if isinstance(size, tuple) else (size, size)

    def __call__(self, image, target):
        image = pad_if_smaller(image, self.size)
        target = pad_if_smaller(target, self.size, fill=255)
        crop_params = transforms.RandomCrop.get_params(image, self.size)
        image = functional.crop(image, *crop_params)
        target = functional.crop(target, *crop_params)
        return image, target


class RandomHorizontalFlip:
    def __init__(self, flip_prob):
        self.flip_prob = flip_prob

    def __call__(self, image, target):
        if random.random() < self.flip_prob:
            image = functional.hflip(image)
            target = functional.hflip(target)
        return image, target


class PILToTensor:
    def __call__(self, image, target):
        image = functional.pil_to_tensor(image)
        target = torch.as_tensor(np.array(target), dtype=torch.int64)
        return image, target


class ConvertImageDtype:
    def __init__(self, dtype):
        self.dtype = dtype

    def __call__(self, image, target):
        image = functional.convert_image_dtype(image, self.dtype)
        return image, target


class Normalize:
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image, target):
        image = functional.normalize(image, mean=self.mean, std=self.std)
        return image, target


class ReduceLabels:
    def __call__(self, image, target):
        if not isinstance(target, np.ndarray):
            target = np.array(target).astype(np.uint8)
        # avoid using underflow conversion
        target[target == 0] = 255
        target = target - 1
        target[target == 254] = 255

        target = Image.fromarray(target)
        return image, target


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
    """

    dataset_name: Optional[str] = field(
        default="segments/sidewalk-semantic",
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
    reduce_labels: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."},
    )

    def __post_init__(self):
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="nvidia/mit-b0",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will"
                "execute code present on the Hub on your local machine."
            )
        },
    )


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_semantic_segmentation", model_args, data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Load dataset
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # TODO support datasets from local folders
    dataset = load_dataset(data_args.dataset_name, cache_dir=model_args.cache_dir)

    # Rename column names to standardized names (only "image" and "label" need to be present)
    if "pixel_values" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"pixel_values": "image"})
    if "annotation" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"annotation": "label"})

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    if data_args.dataset_name == "scene_parse_150":
        repo_id = "huggingface/label-files"
        filename = "ade20k-id2label.json"
    else:
        repo_id = data_args.dataset_name
        filename = "id2label.json"
    id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
    id2label = {int(k): v for k, v in id2label.items()}
    label2id = {v: str(k) for k, v in id2label.items()}

    # Load the mean IoU metric from the datasets package
    metric = evaluate.load("mean_iou")

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    @torch.no_grad()
    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        logits_tensor = torch.from_numpy(logits)
        # scale the logits to the size of the label
        logits_tensor = nn.functional.interpolate(
            logits_tensor,
            size=labels.shape[-2:],
            mode="bilinear",
            align_corners=False,
        ).argmax(dim=1)

        pred_labels = logits_tensor.detach().cpu().numpy()
        metrics = metric.compute(
            predictions=pred_labels,
            references=labels,
            num_labels=len(id2label),
            ignore_index=0,
            reduce_labels=image_processor.do_reduce_labels,
        )
        # add per category metrics as individual key-value pairs
        per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
        per_category_iou = metrics.pop("per_category_iou").tolist()

        metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
        metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})

        return metrics

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        label2id=label2id,
        id2label=id2label,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
    model = AutoModelForSemanticSegmentation.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )

    # Define torchvision transforms to be applied to each image + target.
    # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
    # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
    if "shortest_edge" in image_processor.size:
        # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
        size = (image_processor.size["shortest_edge"], image_processor.size["shortest_edge"])
    else:
        size = (image_processor.size["height"], image_processor.size["width"])
    train_transforms = Compose(
        [
            ReduceLabels() if data_args.reduce_labels else Identity(),
            RandomCrop(size=size),
            RandomHorizontalFlip(flip_prob=0.5),
            PILToTensor(),
            ConvertImageDtype(torch.float),
            Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
        ]
    )
    # Define torchvision transform to be applied to each image.
    # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
    val_transforms = Compose(
        [
            ReduceLabels() if data_args.reduce_labels else Identity(),
            Resize(size=size),
            PILToTensor(),
            ConvertImageDtype(torch.float),
            Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
        ]
    )

    def preprocess_train(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"], example_batch["label"]):
            image, target = train_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = {}
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    def preprocess_val(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"], example_batch["label"]):
            image, target = val_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = {}
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
        # Set the training transforms
        dataset["train"].set_transform(preprocess_train)

    if training_args.do_eval:
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
            )
        # Set the validation transforms
        dataset["validation"].set_transform(preprocess_val)

    # Initalize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=image_processor,
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "dataset": data_args.dataset_name,
        "tags": ["image-segmentation", "vision"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()