Spaces:
Sleeping
Sleeping
Upload scripts/tap_image.py with huggingface_hub
Browse files- scripts/tap_image.py +2096 -0
scripts/tap_image.py
ADDED
@@ -0,0 +1,2096 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import itertools
|
3 |
+
from typing import Any
|
4 |
+
import math
|
5 |
+
import random
|
6 |
+
from collections import namedtuple, defaultdict
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
from scipy.spatial.transform import Rotation as R
|
15 |
+
|
16 |
+
from sklearn.cluster import MeanShift
|
17 |
+
|
18 |
+
import skimage.feature as feature
|
19 |
+
from skimage import color
|
20 |
+
from skimage.feature import SIFT, match_descriptors, plot_matches
|
21 |
+
from skimage.filters import (
|
22 |
+
threshold_otsu,
|
23 |
+
threshold_triangle,
|
24 |
+
threshold_triangle,
|
25 |
+
threshold_isodata,
|
26 |
+
threshold_li,
|
27 |
+
threshold_yen,
|
28 |
+
threshold_mean,
|
29 |
+
threshold_minimum,
|
30 |
+
threshold_triangle,
|
31 |
+
threshold_yen,
|
32 |
+
)
|
33 |
+
|
34 |
+
import cv2
|
35 |
+
from PIL import Image
|
36 |
+
|
37 |
+
import matplotlib.pyplot as plt
|
38 |
+
|
39 |
+
import scripts.tap_const as tc
|
40 |
+
|
41 |
+
|
42 |
+
def _update_axis(
|
43 |
+
axis,
|
44 |
+
image,
|
45 |
+
title=None,
|
46 |
+
fontsize=18,
|
47 |
+
remove_axis=True,
|
48 |
+
title_loc="center",
|
49 |
+
):
|
50 |
+
axis.imshow(image, origin="upper")
|
51 |
+
if title is not None:
|
52 |
+
axis.set_title(title, fontsize=fontsize, loc=title_loc)
|
53 |
+
if remove_axis is True:
|
54 |
+
axis.set_axis_off()
|
55 |
+
|
56 |
+
|
57 |
+
Circle = namedtuple("Circle", field_names="x,y,r")
|
58 |
+
|
59 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
60 |
+
|
61 |
+
color_spaces = {
|
62 |
+
"rgb": ["red", "green", "blue"],
|
63 |
+
"hsv": ["h", "s", "v"],
|
64 |
+
"yiq": ["y", "i", "q"],
|
65 |
+
"lab": ["l", "a", "b"],
|
66 |
+
}
|
67 |
+
available_threholds = ["otsu", "triangle", "isodata", "li", "mean", "minimum", "yen"]
|
68 |
+
|
69 |
+
|
70 |
+
def bgr_to_rgb(clr: tuple) -> tuple:
|
71 |
+
"""Converts from BGR to RGB
|
72 |
+
|
73 |
+
Arguments:
|
74 |
+
clr {tuple} -- Source color
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
tuple -- Converted color
|
78 |
+
"""
|
79 |
+
return (clr[2], clr[1], clr[0])
|
80 |
+
|
81 |
+
|
82 |
+
def rgb_to_bgr(clr: tuple) -> tuple:
|
83 |
+
"""Converts from RGB to BGR
|
84 |
+
|
85 |
+
Arguments:
|
86 |
+
clr {tuple} -- Source color
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
tuple -- Converted color
|
90 |
+
"""
|
91 |
+
return (clr[0], clr[1], clr[2])
|
92 |
+
|
93 |
+
|
94 |
+
def load_image(file_name, file_path=None, rgb: bool = True, image_size: int = None):
|
95 |
+
path = (
|
96 |
+
file_name
|
97 |
+
if isinstance(file_name, Path) is True and file_name.is_file() is True
|
98 |
+
else file_path.joinpath(file_name)
|
99 |
+
)
|
100 |
+
|
101 |
+
try:
|
102 |
+
image = cv2.imread(str(path))
|
103 |
+
if rgb is True:
|
104 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
105 |
+
if image_size is not None:
|
106 |
+
image = cv2.resize(
|
107 |
+
image, dsize=(image_size, image_size), interpolation=cv2.INTER_LANCZOS4
|
108 |
+
)
|
109 |
+
return image
|
110 |
+
except Exception as e:
|
111 |
+
print(file_name)
|
112 |
+
print(f"Failed load imge: {str(e)}")
|
113 |
+
return None
|
114 |
+
|
115 |
+
|
116 |
+
def to_pil(image, size: tuple = None):
|
117 |
+
if image is None:
|
118 |
+
return None
|
119 |
+
ret = Image.fromarray(image)
|
120 |
+
if size is not None:
|
121 |
+
ret = ret.resize(size=size, resample=Image.Resampling.LANCZOS)
|
122 |
+
return ret
|
123 |
+
|
124 |
+
|
125 |
+
def to_cv(image, size: tuple = None):
|
126 |
+
if size is not None:
|
127 |
+
image = image.resize(size=size, resample=Image.Resampling.LANCZOS)
|
128 |
+
return np.array(image)
|
129 |
+
|
130 |
+
|
131 |
+
def rgb2X(rgb_color, target_color_space):
|
132 |
+
if isinstance(rgb_color, np.ndarray) is False:
|
133 |
+
rgb_color = np.array(rgb_color)
|
134 |
+
if target_color_space == "hsv":
|
135 |
+
return color.rgb2hsv(rgb_color)
|
136 |
+
elif target_color_space == "yiq":
|
137 |
+
return color.rgb2yiq(rgb_color)
|
138 |
+
elif target_color_space == "lab":
|
139 |
+
return color.rgb2lab(rgb_color)
|
140 |
+
else:
|
141 |
+
return rgb_color
|
142 |
+
|
143 |
+
|
144 |
+
def get_channels(image, color_space):
|
145 |
+
"""Get all channels from a colorspace
|
146 |
+
|
147 |
+
Args:
|
148 |
+
image (np.ndarray): Source RGB image
|
149 |
+
color_space (str): colorspace
|
150 |
+
|
151 |
+
Raises:
|
152 |
+
NotImplementedError: Unknown color space
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
tuple: channels
|
156 |
+
"""
|
157 |
+
if color_space == "rgb":
|
158 |
+
return cv2.split(image)
|
159 |
+
elif color_space == "hsv":
|
160 |
+
return cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2HSV))
|
161 |
+
elif color_space == "yiq":
|
162 |
+
return [
|
163 |
+
((c - np.min(c)) / (np.max(c) - np.min(c)) * 255).astype(np.uint8)
|
164 |
+
for c in cv2.split(to_cv(color.rgb2yiq(to_pil(image))))
|
165 |
+
]
|
166 |
+
elif color_space == "lab":
|
167 |
+
return cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2LAB))
|
168 |
+
else:
|
169 |
+
raise NotImplementedError(f"Unknowncolorspace {color_space}")
|
170 |
+
|
171 |
+
|
172 |
+
def get_channel(image, color_space, channel):
|
173 |
+
channels = get_channels(image=image, color_space=color_space)
|
174 |
+
if channel in ["red", "h", "y", "l"]:
|
175 |
+
return channels[0]
|
176 |
+
if channel in ["green", "s", "i", "a"]:
|
177 |
+
return channels[1]
|
178 |
+
if channel in ["blue", "v", "q", "b"]:
|
179 |
+
return channels[2]
|
180 |
+
else:
|
181 |
+
raise NotImplementedError(
|
182 |
+
f"Unknown combination color space {color_space}, channel {channel}"
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
def multi_and(image_list: tuple):
|
187 |
+
"""Performs an AND with all the images in the tuple
|
188 |
+
|
189 |
+
:param image_list:
|
190 |
+
:return: image
|
191 |
+
"""
|
192 |
+
img_lst = [i for i in image_list if i is not None]
|
193 |
+
list_len_ = len(img_lst)
|
194 |
+
|
195 |
+
if list_len_ == 0:
|
196 |
+
return None
|
197 |
+
elif list_len_ == 1:
|
198 |
+
return img_lst[0]
|
199 |
+
else:
|
200 |
+
res = cv2.bitwise_and(img_lst[0], img_lst[1])
|
201 |
+
if len(img_lst) > 2:
|
202 |
+
for current_image in img_lst[2:]:
|
203 |
+
res = cv2.bitwise_and(res, current_image)
|
204 |
+
|
205 |
+
return res
|
206 |
+
|
207 |
+
|
208 |
+
def multi_or(image_list: tuple):
|
209 |
+
"""Performs an OR with all the images in the tuple
|
210 |
+
|
211 |
+
:param image_list:
|
212 |
+
:return: image
|
213 |
+
"""
|
214 |
+
img_lst = [i for i in image_list if i is not None]
|
215 |
+
list_len_ = len(img_lst)
|
216 |
+
|
217 |
+
if list_len_ == 0:
|
218 |
+
return None
|
219 |
+
elif list_len_ == 1:
|
220 |
+
return img_lst[0]
|
221 |
+
else:
|
222 |
+
res = cv2.bitwise_or(img_lst[0], img_lst[1])
|
223 |
+
if list_len_ > 2:
|
224 |
+
for current_image in img_lst[2:]:
|
225 |
+
res = cv2.bitwise_or(res, current_image)
|
226 |
+
return res
|
227 |
+
|
228 |
+
|
229 |
+
def get_threshold(image, colorspace, channel, method, is_over: bool):
|
230 |
+
channel = get_channels(image=image, color_space=colorspace)[
|
231 |
+
color_spaces[colorspace].index(channel)
|
232 |
+
]
|
233 |
+
if method == "otsu":
|
234 |
+
threshold = threshold_otsu(channel)
|
235 |
+
elif method == "triangle":
|
236 |
+
threshold = threshold_triangle(channel)
|
237 |
+
elif method == "isodata":
|
238 |
+
threshold = threshold_isodata(channel)
|
239 |
+
elif method == "li":
|
240 |
+
threshold = threshold_li(channel)
|
241 |
+
elif method == "mean":
|
242 |
+
threshold = threshold_mean(channel)
|
243 |
+
elif method == "minimum":
|
244 |
+
threshold = threshold_minimum(channel)
|
245 |
+
elif method == "yen":
|
246 |
+
threshold = threshold_yen(channel)
|
247 |
+
else:
|
248 |
+
raise NotImplementedError(f"Unknown method {method}")
|
249 |
+
|
250 |
+
return threshold, channel > threshold if is_over is True else channel < threshold
|
251 |
+
|
252 |
+
|
253 |
+
class Rectangle:
|
254 |
+
def __init__(self, x, y, w, h, score=None, user="dummy") -> None:
|
255 |
+
self.x = int(x)
|
256 |
+
self.y = int(y)
|
257 |
+
self.w = int(w)
|
258 |
+
self.h = int(h)
|
259 |
+
self.score = score
|
260 |
+
self.user = user
|
261 |
+
|
262 |
+
def __repr__(self) -> str:
|
263 |
+
return f"[{self.x},{self.y}:{self.w},{self.h}]"
|
264 |
+
|
265 |
+
def __str__(self) -> str:
|
266 |
+
return f"[{self.x},{self.y}:{self.w},{self.h}]"
|
267 |
+
|
268 |
+
def draw(self, image, color=tc.C_WHITE, thickness=2):
|
269 |
+
return cv2.rectangle(
|
270 |
+
image,
|
271 |
+
pt1=(self.x1, self.y1),
|
272 |
+
pt2=(self.x2, self.y2),
|
273 |
+
color=color,
|
274 |
+
thickness=thickness,
|
275 |
+
)
|
276 |
+
|
277 |
+
def draw_as_bbox(self, image, color=tc.C_WHITE, thickness=2):
|
278 |
+
return cv2.circle(
|
279 |
+
self.draw(image=image, color=color, thickness=thickness),
|
280 |
+
center=(self.cx, self.cy),
|
281 |
+
radius=5,
|
282 |
+
color=tuple(reversed(color)),
|
283 |
+
thickness=thickness,
|
284 |
+
)
|
285 |
+
|
286 |
+
def to_dict(self, extended: bool = False):
|
287 |
+
out = self.__dict__
|
288 |
+
if extended is False:
|
289 |
+
return out
|
290 |
+
return out | {
|
291 |
+
"cx": self.cx,
|
292 |
+
"cy": self.cy,
|
293 |
+
"x1": self.x1,
|
294 |
+
"x2": self.x2,
|
295 |
+
"y1": self.y1,
|
296 |
+
"y2": self.y2,
|
297 |
+
}
|
298 |
+
|
299 |
+
def assign(self, src):
|
300 |
+
self.x = src.x
|
301 |
+
self.y = src.y
|
302 |
+
self.w = src.w
|
303 |
+
self.h = src.h
|
304 |
+
|
305 |
+
self.user = src.user
|
306 |
+
self.score = src.score
|
307 |
+
|
308 |
+
def union(self, b):
|
309 |
+
posX = min(self.x, b.x)
|
310 |
+
posY = min(self.y, b.y)
|
311 |
+
|
312 |
+
res = Rectangle(
|
313 |
+
x=posX,
|
314 |
+
y=posY,
|
315 |
+
w=max(self.right, b.right) - posX,
|
316 |
+
h=max(self.bottom, b.bottom) - posY,
|
317 |
+
user=self.user,
|
318 |
+
)
|
319 |
+
return res
|
320 |
+
|
321 |
+
def intersection(self, b):
|
322 |
+
posX = max(self.x, b.x)
|
323 |
+
posY = max(self.y, b.y)
|
324 |
+
|
325 |
+
candidate = Rectangle(
|
326 |
+
x=posX,
|
327 |
+
y=posY,
|
328 |
+
w=min(self.right, b.right) - posX,
|
329 |
+
h=min(self.bottom, b.bottom) - posY,
|
330 |
+
)
|
331 |
+
if candidate.w > 0 and candidate.h > 0:
|
332 |
+
return candidate
|
333 |
+
return Rectangle(0, 0, 0, 0)
|
334 |
+
|
335 |
+
def ratio(self, b):
|
336 |
+
return self.intersection(b).area / self.union(b).area
|
337 |
+
|
338 |
+
def contains(self, b, ratio):
|
339 |
+
return self.ratio(b) > ratio
|
340 |
+
|
341 |
+
def to_bbox(self):
|
342 |
+
return [self.x, self.y, self.right, self.bottom]
|
343 |
+
|
344 |
+
@classmethod
|
345 |
+
def from_row(cls, row):
|
346 |
+
return cls(x=row.x, y=row.y, w=row.w, h=row.h)
|
347 |
+
|
348 |
+
@classmethod
|
349 |
+
def from_bbox(cls, bbox):
|
350 |
+
x, y, w, h = bbox
|
351 |
+
return cls(x=x, y=y, w=w, h=h)
|
352 |
+
|
353 |
+
@property
|
354 |
+
def bottom(self):
|
355 |
+
return self.y + self.h
|
356 |
+
|
357 |
+
@property
|
358 |
+
def right(self):
|
359 |
+
return self.x + self.w
|
360 |
+
|
361 |
+
@property
|
362 |
+
def start_row(self):
|
363 |
+
return self.y
|
364 |
+
|
365 |
+
@property
|
366 |
+
def end_row(self):
|
367 |
+
return self.y + self.h
|
368 |
+
|
369 |
+
@property
|
370 |
+
def start_col(self):
|
371 |
+
return self.x
|
372 |
+
|
373 |
+
@property
|
374 |
+
def end_col(self):
|
375 |
+
return self.x + self.w
|
376 |
+
|
377 |
+
@property
|
378 |
+
def cx(self):
|
379 |
+
return self.x + self.w // 2
|
380 |
+
|
381 |
+
@property
|
382 |
+
def cy(self):
|
383 |
+
return self.y + self.h // 2
|
384 |
+
|
385 |
+
@property
|
386 |
+
def x1(self):
|
387 |
+
return self.x
|
388 |
+
|
389 |
+
@property
|
390 |
+
def x2(self):
|
391 |
+
return self.x + self.w
|
392 |
+
|
393 |
+
@property
|
394 |
+
def y1(self):
|
395 |
+
return self.y
|
396 |
+
|
397 |
+
@property
|
398 |
+
def y2(self):
|
399 |
+
return self.y + self.h
|
400 |
+
|
401 |
+
@property
|
402 |
+
def area(self):
|
403 |
+
return self.w * self.h
|
404 |
+
|
405 |
+
|
406 |
+
def get_brightness(image, bbox: Rectangle = None):
|
407 |
+
if bbox is None:
|
408 |
+
r, g, b = cv2.split(image)
|
409 |
+
else:
|
410 |
+
r, g, b = cv2.split(
|
411 |
+
image[bbox.start_row : bbox.end_row, bbox.start_col : bbox.end_col]
|
412 |
+
)
|
413 |
+
return np.sqrt(
|
414 |
+
0.241 * np.power(r.astype(float), 2)
|
415 |
+
+ 0.691 * np.power(g.astype(float), 2)
|
416 |
+
+ 0.068 * np.power(b.astype(float), 2)
|
417 |
+
).mean()
|
418 |
+
|
419 |
+
|
420 |
+
def get_sharpness(image):
|
421 |
+
return cv2.Laplacian(
|
422 |
+
cv2.cvtColor(image, cv2.COLOR_BGR2GRAY),
|
423 |
+
cv2.CV_64F,
|
424 |
+
).var()
|
425 |
+
|
426 |
+
|
427 |
+
def masked_image(image, mask, background_alpha: float = 0.8):
|
428 |
+
background = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) * background_alpha
|
429 |
+
background[background > 255] = 255
|
430 |
+
background = cv2.merge([background, background, background]).astype(np.uint8)
|
431 |
+
return cv2.bitwise_or(
|
432 |
+
cv2.bitwise_and(background, background, mask=255 - mask),
|
433 |
+
cv2.bitwise_and(image, image, mask=mask),
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
def remove_empty_boxes(boxes):
|
438 |
+
return boxes.dropna(subset=["x", "y", "w", "h"])
|
439 |
+
|
440 |
+
|
441 |
+
def draw_boxes(image, boxes, thickness=2):
|
442 |
+
boxes_ = remove_empty_boxes(boxes=boxes)
|
443 |
+
if len(boxes_) > 0:
|
444 |
+
for rect in [Rectangle.from_row(row) for _, row in boxes_.iterrows()]:
|
445 |
+
image = rect.draw(image=image, color=tc.C_FUCHSIA, thickness=thickness)
|
446 |
+
return image
|
447 |
+
|
448 |
+
|
449 |
+
def rotate_image(image, angle):
|
450 |
+
(h, w) = image.shape[:2]
|
451 |
+
return cv2.warpAffine(
|
452 |
+
image, cv2.getRotationMatrix2D((w // 2, h // 2), angle, 1.0), (w, h)
|
453 |
+
)
|
454 |
+
|
455 |
+
|
456 |
+
def fix_brightness(
|
457 |
+
image,
|
458 |
+
brightness_target=70,
|
459 |
+
bbox: Rectangle = Rectangle(10, 10, 100, 100),
|
460 |
+
pass_through: bool = False,
|
461 |
+
):
|
462 |
+
avg_bright = get_brightness(image=image, bbox=bbox)
|
463 |
+
|
464 |
+
if pass_through is True:
|
465 |
+
return image
|
466 |
+
elif avg_bright > brightness_target:
|
467 |
+
gamma = brightness_target / avg_bright
|
468 |
+
if gamma != 1:
|
469 |
+
inv_gamma = 1.0 / gamma
|
470 |
+
table = np.array(
|
471 |
+
[((i / 255.0) ** inv_gamma) * 255 for i in np.arange(0, 256)]
|
472 |
+
).astype("uint8")
|
473 |
+
return cv2.LUT(src=image, lut=table)
|
474 |
+
else:
|
475 |
+
return image
|
476 |
+
else:
|
477 |
+
return cv2.convertScaleAbs(
|
478 |
+
src=image,
|
479 |
+
alpha=(brightness_target + avg_bright) / (2 * avg_bright),
|
480 |
+
beta=(brightness_target - avg_bright) / 2,
|
481 |
+
)
|
482 |
+
|
483 |
+
|
484 |
+
def update_data(data, new_data):
|
485 |
+
for k, v in new_data.items():
|
486 |
+
if k not in data:
|
487 |
+
data[k] = []
|
488 |
+
data[k].append(v)
|
489 |
+
|
490 |
+
return data
|
491 |
+
|
492 |
+
|
493 |
+
def add_perceived_bightness_data(image, data):
|
494 |
+
b, g, r = cv2.split(image)
|
495 |
+
s = np.sqrt(
|
496 |
+
0.241 * np.power(r.astype(float), 2)
|
497 |
+
+ 0.691 * np.power(g.astype(float), 2)
|
498 |
+
+ 0.068 * np.power(b.astype(float), 2)
|
499 |
+
)
|
500 |
+
return update_data(
|
501 |
+
data=data,
|
502 |
+
new_data={
|
503 |
+
"cl_bright_mean": s.mean(),
|
504 |
+
"cl_bright_std": np.std(s),
|
505 |
+
"cl_bright_min": s.min(),
|
506 |
+
"cl_bright_max": s.max(),
|
507 |
+
},
|
508 |
+
)
|
509 |
+
|
510 |
+
|
511 |
+
def add_hsv_data(image, data):
|
512 |
+
h, s, *_ = cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2HSV))
|
513 |
+
return update_data(
|
514 |
+
data=data,
|
515 |
+
new_data={
|
516 |
+
"cl_hue_mean": h.mean(),
|
517 |
+
"cl_hue_std": np.std(h),
|
518 |
+
"cl_hue_min": h.min(),
|
519 |
+
"cl_hue_max": h.max(),
|
520 |
+
"cl_sat_mean": s.mean(),
|
521 |
+
"cl_sat_std": np.std(s),
|
522 |
+
"cl_sat_min": s.min(),
|
523 |
+
"cl_sat_max": s.max(),
|
524 |
+
},
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
def add_lab_data(image, data):
|
529 |
+
_, a, b = cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2LAB))
|
530 |
+
return update_data(
|
531 |
+
data=data,
|
532 |
+
new_data={
|
533 |
+
"cl_a_mean": a.mean(),
|
534 |
+
"cl_a_std": np.std(a),
|
535 |
+
"cl_a_min": a.min(),
|
536 |
+
"cl_a_max": a.max(),
|
537 |
+
"cl_b_mean": b.mean(),
|
538 |
+
"cl_b_std": np.std(b),
|
539 |
+
"cl_b_min": b.min(),
|
540 |
+
"cl_b_max": b.max(),
|
541 |
+
},
|
542 |
+
)
|
543 |
+
|
544 |
+
|
545 |
+
def add_yiq_data(image, data):
|
546 |
+
_, i, q = get_channels(image=image, color_space="yiq")
|
547 |
+
return update_data(
|
548 |
+
data=data,
|
549 |
+
new_data={
|
550 |
+
"cl_i_mean": i.mean(),
|
551 |
+
"cl_i_std": np.std(i),
|
552 |
+
"cl_i_min": i.min(),
|
553 |
+
"cl_i_max": i.max(),
|
554 |
+
"cl_q_mean": q.mean(),
|
555 |
+
"cl_q_std": np.std(q),
|
556 |
+
"cl_q_min": q.min(),
|
557 |
+
"cl_q_max": q.max(),
|
558 |
+
},
|
559 |
+
)
|
560 |
+
|
561 |
+
|
562 |
+
def add_grey_comatrix_data(image, data, distances, angles) -> dict:
|
563 |
+
graycom = feature.graycomatrix(
|
564 |
+
cv2.cvtColor(image, cv2.COLOR_BGR2GRAY),
|
565 |
+
[x[2] for x in distances],
|
566 |
+
[x[2] for x in angles],
|
567 |
+
levels=256,
|
568 |
+
)
|
569 |
+
|
570 |
+
new_data = {}
|
571 |
+
for k, v in dict(
|
572 |
+
contrast=np.array(feature.graycoprops(graycom, "contrast")),
|
573 |
+
dissimilarity=np.array(feature.graycoprops(graycom, "dissimilarity")),
|
574 |
+
homogeneity=np.array(feature.graycoprops(graycom, "homogeneity")),
|
575 |
+
energy=np.array(feature.graycoprops(graycom, "energy")),
|
576 |
+
correlation=np.array(feature.graycoprops(graycom, "correlation")),
|
577 |
+
asm=np.array(feature.graycoprops(graycom, "ASM")),
|
578 |
+
).items():
|
579 |
+
for e in itertools.product(distances, angles):
|
580 |
+
new_data[f"gp_{k}_{e[0][0]}_{e[1][0]}"] = v[e[0][1]][e[1][1]]
|
581 |
+
|
582 |
+
return update_data(data=data, new_data=new_data)
|
583 |
+
|
584 |
+
|
585 |
+
def get_sharpness(image):
|
586 |
+
return cv2.Laplacian(
|
587 |
+
cv2.cvtColor(image, cv2.COLOR_BGR2GRAY),
|
588 |
+
cv2.CV_64F,
|
589 |
+
).var()
|
590 |
+
|
591 |
+
|
592 |
+
def add_image_data(
|
593 |
+
df,
|
594 |
+
file_path_column,
|
595 |
+
path_to_images=None,
|
596 |
+
distances=[["d1", 0, 1], ["d10", 1, 10]],
|
597 |
+
angles=[["a0", 0, 0], ["api4", 1, np.pi / 4]],
|
598 |
+
image_size: int = 0,
|
599 |
+
):
|
600 |
+
patch_data = defaultdict(list)
|
601 |
+
for file_path in tqdm(df[file_path_column], desc="Embedding image data"):
|
602 |
+
image = load_image(file_name=file_path, file_path=path_to_images)
|
603 |
+
if image_size > 0:
|
604 |
+
image = cv2.resize(image, dsize=(image_size, image_size))
|
605 |
+
patch_data[file_path_column].append(file_path)
|
606 |
+
patch_data = add_perceived_bightness_data(image=image, data=patch_data)
|
607 |
+
patch_data = add_hsv_data(image=image, data=patch_data)
|
608 |
+
patch_data = add_lab_data(image=image, data=patch_data)
|
609 |
+
patch_data = add_yiq_data(image=image, data=patch_data)
|
610 |
+
patch_data = add_grey_comatrix_data(
|
611 |
+
image=image,
|
612 |
+
data=patch_data,
|
613 |
+
distances=distances,
|
614 |
+
angles=angles,
|
615 |
+
)
|
616 |
+
patch_data["sharpness"].append(get_sharpness(image))
|
617 |
+
|
618 |
+
return pd.merge(
|
619 |
+
left=df, right=pd.DataFrame(data=patch_data), on=file_path_column, how="left"
|
620 |
+
)
|
621 |
+
|
622 |
+
|
623 |
+
def filter_contours(mask, min_contour_size):
|
624 |
+
return cv2.bitwise_and(
|
625 |
+
cv2.drawContours(
|
626 |
+
np.zeros_like(mask),
|
627 |
+
[
|
628 |
+
c
|
629 |
+
for c in cv2.findContours(
|
630 |
+
mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_TC89_L1
|
631 |
+
)[-2:-1][0]
|
632 |
+
if cv2.contourArea(c) > min_contour_size and c.any()
|
633 |
+
],
|
634 |
+
-1,
|
635 |
+
255,
|
636 |
+
-1,
|
637 |
+
),
|
638 |
+
mask,
|
639 |
+
)
|
640 |
+
return (
|
641 |
+
cv2.drawContours(
|
642 |
+
mask,
|
643 |
+
contours=[
|
644 |
+
c
|
645 |
+
for c in get_external_contours(mask)
|
646 |
+
if cv2.contourArea(c) < min_contour_size
|
647 |
+
],
|
648 |
+
contourIdx=-1,
|
649 |
+
color=0,
|
650 |
+
thickness=-1,
|
651 |
+
)
|
652 |
+
if min_contour_size > 0
|
653 |
+
else mask
|
654 |
+
)
|
655 |
+
|
656 |
+
|
657 |
+
def get_raw_mask(
|
658 |
+
image,
|
659 |
+
thresholds: list,
|
660 |
+
min_contour_size: int = 0,
|
661 |
+
bitwise_op: str = "and",
|
662 |
+
delete_over: int = -1,
|
663 |
+
):
|
664 |
+
"""Create a mask seed fh,or SAM
|
665 |
+
|
666 |
+
Args:
|
667 |
+
image (np.array): Source image
|
668 |
+
thresholds (list): list of thresholds to be applies
|
669 |
+
cm_min_contour_size (int): Contours below threshold will be discarded
|
670 |
+
"""
|
671 |
+
mask = thresholds[0].threshold(image)
|
672 |
+
for threshold in thresholds[1:]:
|
673 |
+
if bitwise_op == "and":
|
674 |
+
mask = cv2.bitwise_and(mask, threshold.threshold(image))
|
675 |
+
elif bitwise_op == "or":
|
676 |
+
mask = cv2.bitwise_or(mask, threshold.threshold(image))
|
677 |
+
else:
|
678 |
+
raise NotImplementedError
|
679 |
+
|
680 |
+
if min_contour_size > 0:
|
681 |
+
mask = filter_contours(mask, min_contour_size=min_contour_size)
|
682 |
+
|
683 |
+
if delete_over > 0:
|
684 |
+
h, w = mask.shape
|
685 |
+
mask = cv2.bitwise_and(
|
686 |
+
mask,
|
687 |
+
cv2.circle(
|
688 |
+
np.zeros_like(mask),
|
689 |
+
center=(w // 2, h // 2),
|
690 |
+
color=255,
|
691 |
+
radius=delete_over,
|
692 |
+
thickness=-1,
|
693 |
+
),
|
694 |
+
)
|
695 |
+
|
696 |
+
return mask
|
697 |
+
|
698 |
+
|
699 |
+
def build_distance_map(
|
700 |
+
mask, threshold: float = 0.8, demo: bool = False, label: int = 1
|
701 |
+
):
|
702 |
+
dist_transform = cv2.distanceTransform(
|
703 |
+
mask, cv2.DIST_L2, cv2.DIST_MASK_PRECISE
|
704 |
+
).astype(np.uint8)
|
705 |
+
threshold = np.max(dist_transform) * threshold
|
706 |
+
ret = dist_transform.copy()
|
707 |
+
ret[ret >= threshold] = 255
|
708 |
+
ret[ret < threshold] = 0
|
709 |
+
dt = (dist_transform.astype(float) / np.max(dist_transform) * 255).astype(np.uint8)
|
710 |
+
dt = cv2.equalizeHist(dist_transform)
|
711 |
+
if demo is True:
|
712 |
+
if label == 1:
|
713 |
+
return cv2.merge([np.zeros_like(mask), ret, np.zeros_like(mask)])
|
714 |
+
elif label == 0:
|
715 |
+
return cv2.merge([ret, np.zeros_like(mask), np.zeros_like(mask)])
|
716 |
+
else:
|
717 |
+
raise NotImplementedError
|
718 |
+
else:
|
719 |
+
return ret
|
720 |
+
|
721 |
+
|
722 |
+
def get_contours(mask, retrieve_mode, method):
|
723 |
+
return [
|
724 |
+
c
|
725 |
+
for c in cv2.findContours(mask.copy(), retrieve_mode, method)[-2:-1][0]
|
726 |
+
if cv2.contourArea(c, True) < 0
|
727 |
+
]
|
728 |
+
|
729 |
+
|
730 |
+
def get_seeds(
|
731 |
+
mask, modes: dict = {"rnd": 10}, label: int = 1, max_seeds: int = 0
|
732 |
+
) -> dict:
|
733 |
+
input_points = pd.Series()
|
734 |
+
if "rnd" in modes:
|
735 |
+
nz = np.count_nonzero(mask)
|
736 |
+
if nz > 0:
|
737 |
+
input_points = pd.concat(
|
738 |
+
[
|
739 |
+
input_points,
|
740 |
+
pd.Series([list(p[0]) for p in cv2.findNonZero(mask)]).sample(
|
741 |
+
n=nz // modes["rnd"]
|
742 |
+
),
|
743 |
+
]
|
744 |
+
)
|
745 |
+
if "dist" in modes:
|
746 |
+
dt = cv2.equalizeHist(
|
747 |
+
cv2.distanceTransform(mask, cv2.DIST_L2, cv2.DIST_MASK_PRECISE).astype(
|
748 |
+
np.uint8
|
749 |
+
)
|
750 |
+
)
|
751 |
+
nz = np.count_nonzero(dt)
|
752 |
+
if nz > 0:
|
753 |
+
candidates = cv2.findNonZero(dt)
|
754 |
+
input_points = pd.concat(
|
755 |
+
[
|
756 |
+
input_points,
|
757 |
+
pd.Series(
|
758 |
+
[
|
759 |
+
p[0]
|
760 |
+
for p in random.choices(
|
761 |
+
population=candidates,
|
762 |
+
weights=list(dt[np.nonzero(dt)] / 255),
|
763 |
+
k=candidates.size // int(modes["dist"]),
|
764 |
+
)
|
765 |
+
]
|
766 |
+
),
|
767 |
+
]
|
768 |
+
)
|
769 |
+
|
770 |
+
if len(input_points) > max_seeds:
|
771 |
+
input_points = input_points.sample(n=max_seeds)
|
772 |
+
input_points = np.array(input_points.to_list())
|
773 |
+
|
774 |
+
return {
|
775 |
+
"input_points": input_points,
|
776 |
+
"input_labels": np.array([label for _ in range(len(input_points))]),
|
777 |
+
}
|
778 |
+
|
779 |
+
|
780 |
+
def get_grid(mask, dots_per_rc):
|
781 |
+
grid = np.zeros_like(mask)
|
782 |
+
step = np.max(grid.shape[:2]) // dots_per_rc
|
783 |
+
grid[::step, ::step] = 1
|
784 |
+
grid[step // 2 :: step, step // 2 :: step] = 1
|
785 |
+
return grid.astype(np.uint8)
|
786 |
+
|
787 |
+
|
788 |
+
def get_grid_seeds(
|
789 |
+
mask_keep, mask_discard, keep_dots_per_row: int, discard_dots_per_row: int
|
790 |
+
):
|
791 |
+
keep_points = np.array(
|
792 |
+
[
|
793 |
+
p[0]
|
794 |
+
for p in cv2.findNonZero(
|
795 |
+
cv2.bitwise_and(
|
796 |
+
mask_keep, get_grid(mask=mask_keep, dots_per_rc=keep_dots_per_row)
|
797 |
+
)
|
798 |
+
)
|
799 |
+
]
|
800 |
+
)
|
801 |
+
|
802 |
+
discard_points = np.array(
|
803 |
+
[
|
804 |
+
p[0]
|
805 |
+
for p in cv2.findNonZero(
|
806 |
+
cv2.bitwise_and(
|
807 |
+
mask_discard,
|
808 |
+
get_grid(mask=mask_discard, dots_per_rc=discard_dots_per_row),
|
809 |
+
)
|
810 |
+
)
|
811 |
+
]
|
812 |
+
)
|
813 |
+
|
814 |
+
return merge_seeds(
|
815 |
+
[
|
816 |
+
{
|
817 |
+
"input_points": keep_points,
|
818 |
+
"input_labels": np.array([1 for _ in range(len(keep_points))]),
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"input_points": discard_points,
|
822 |
+
"input_labels": np.array([0 for _ in range(len(discard_points))]),
|
823 |
+
},
|
824 |
+
]
|
825 |
+
)
|
826 |
+
|
827 |
+
|
828 |
+
def merge_seeds(seeds_list: list):
|
829 |
+
try:
|
830 |
+
return {
|
831 |
+
"input_points": np.concatenate(
|
832 |
+
[a["input_points"] for a in seeds_list if a["input_points"].size > 0]
|
833 |
+
),
|
834 |
+
"input_labels": np.concatenate(
|
835 |
+
[a["input_labels"] for a in seeds_list if a["input_labels"].size > 0]
|
836 |
+
),
|
837 |
+
}
|
838 |
+
except Exception as e:
|
839 |
+
return {
|
840 |
+
"input_points": np.array([]),
|
841 |
+
"input_labels": np.array([]),
|
842 |
+
}
|
843 |
+
|
844 |
+
|
845 |
+
def enlarge_contours(mask, increase_by) -> list:
|
846 |
+
return Morphologer(
|
847 |
+
op="dilate", kernel_size=increase_by, proc_count=1, kernel=cv2.MORPH_ELLIPSE
|
848 |
+
)(mask)
|
849 |
+
|
850 |
+
|
851 |
+
class Morphologer:
|
852 |
+
allowed_ops = ["none", "erode", "dilate", "open", "close"]
|
853 |
+
|
854 |
+
def __init__(
|
855 |
+
self, op=None, kernel_size=3, proc_count=1, kernel=cv2.MORPH_RECT
|
856 |
+
) -> None:
|
857 |
+
self.op = op
|
858 |
+
self.kernel_size = kernel_size
|
859 |
+
self.proc_count = proc_count
|
860 |
+
self.kernel = kernel
|
861 |
+
|
862 |
+
def __call__(self, mask) -> Any:
|
863 |
+
return self.process(mask=mask)
|
864 |
+
|
865 |
+
def __repr__(self) -> str:
|
866 |
+
return f"{self.op}|{self.kernel_size}|{self.proc_count}|{self.kernel}"
|
867 |
+
|
868 |
+
def to_json(self):
|
869 |
+
return self.__dict__
|
870 |
+
|
871 |
+
def from_json(self, d: dict):
|
872 |
+
for k, v in d.items():
|
873 |
+
setattr(self, k, v)
|
874 |
+
|
875 |
+
@classmethod
|
876 |
+
def create_from_json(cls, d: dict):
|
877 |
+
out = cls()
|
878 |
+
out.from_json(d)
|
879 |
+
return out
|
880 |
+
|
881 |
+
def update(self, op, kernel_size, proc_count, kernel):
|
882 |
+
self.op = op
|
883 |
+
self.kernel_size = kernel_size
|
884 |
+
self.proc_count = proc_count
|
885 |
+
self.kernel = kernel
|
886 |
+
|
887 |
+
def process(self, mask):
|
888 |
+
if self.kernel_size > 2:
|
889 |
+
if self.op == "erode":
|
890 |
+
op = cv2.MORPH_ERODE
|
891 |
+
elif self.op == "dilate":
|
892 |
+
op = cv2.MORPH_DILATE
|
893 |
+
elif self.op == "open":
|
894 |
+
op = cv2.MORPH_OPEN
|
895 |
+
elif self.op == "close":
|
896 |
+
op = cv2.MORPH_CLOSE
|
897 |
+
elif self.op == "none":
|
898 |
+
return mask
|
899 |
+
else:
|
900 |
+
raise NotImplementedError
|
901 |
+
|
902 |
+
for _ in range(self.proc_count):
|
903 |
+
mask = cv2.morphologyEx(
|
904 |
+
mask,
|
905 |
+
op=op,
|
906 |
+
kernel=cv2.getStructuringElement(
|
907 |
+
shape=self.kernel, ksize=(self.kernel_size, self.kernel_size)
|
908 |
+
),
|
909 |
+
)
|
910 |
+
return mask
|
911 |
+
|
912 |
+
|
913 |
+
class Thresholder:
|
914 |
+
def __init__(
|
915 |
+
self,
|
916 |
+
color_space: str = "hsv",
|
917 |
+
channel: str = "h",
|
918 |
+
min=0,
|
919 |
+
max=255,
|
920 |
+
) -> None:
|
921 |
+
self.color_space = color_space
|
922 |
+
self.channel = channel
|
923 |
+
self.min = min
|
924 |
+
self.max = max
|
925 |
+
|
926 |
+
def __repr__(self) -> str:
|
927 |
+
return f"{self.color_space}|{self.channel}|{self.min}|{self.max}"
|
928 |
+
|
929 |
+
def __str__(self) -> str:
|
930 |
+
return f"{self.color_space}, {self.channel}: {self.min}->{self.max}"
|
931 |
+
|
932 |
+
def update(self, min_max):
|
933 |
+
self.min = min_max[0]
|
934 |
+
self.max = min_max[1]
|
935 |
+
|
936 |
+
def to_json(self):
|
937 |
+
return self.__dict__
|
938 |
+
|
939 |
+
def from_json(self, d: dict):
|
940 |
+
for k, v in d.items():
|
941 |
+
setattr(self, k, v)
|
942 |
+
|
943 |
+
@classmethod
|
944 |
+
def create_from_json(cls, d: dict):
|
945 |
+
out = cls()
|
946 |
+
out.from_json(d)
|
947 |
+
return out
|
948 |
+
|
949 |
+
def threshold(self, image):
|
950 |
+
channel = get_channel(
|
951 |
+
image=image, color_space=self.color_space, channel=self.channel
|
952 |
+
)
|
953 |
+
return cv2.inRange(channel, self.min, self.max)
|
954 |
+
|
955 |
+
def __call__(self, image) -> Any:
|
956 |
+
return self.threshold(image=image)
|
957 |
+
|
958 |
+
@property
|
959 |
+
def display_name(self) -> str:
|
960 |
+
return f"{self.color_space}: {self.channel}"
|
961 |
+
|
962 |
+
@property
|
963 |
+
def as_tuple(self) -> tuple:
|
964 |
+
return self.min, self.max
|
965 |
+
|
966 |
+
|
967 |
+
def check_hue(
|
968 |
+
image, mask, cnt, ok_hue_thresholder: Thresholder, ok_hue_pxl_ratio: float = 0.2
|
969 |
+
):
|
970 |
+
x, y, w, h = [int(i) for i in cv2.boundingRect(cnt)]
|
971 |
+
masked_image = cv2.bitwise_and(
|
972 |
+
image, image, mask=cv2.drawContours(np.zeros_like(mask), [cnt], -1, 255, -1)
|
973 |
+
)
|
974 |
+
box_hue = cv2.split(
|
975 |
+
cv2.cvtColor(masked_image[y : y + h, x : x + w], cv2.COLOR_RGB2HSV)
|
976 |
+
)[0]
|
977 |
+
return (
|
978 |
+
box_hue[
|
979 |
+
(box_hue > ok_hue_thresholder.min) & (box_hue < ok_hue_thresholder.max)
|
980 |
+
].size
|
981 |
+
> np.count_nonzero(box_hue) * ok_hue_pxl_ratio
|
982 |
+
)
|
983 |
+
|
984 |
+
|
985 |
+
def get_distance_data(hull, origin, max_dist):
|
986 |
+
"""
|
987 |
+
Calculates distances from origin to contour barycenter,
|
988 |
+
also returns surface data
|
989 |
+
:param hull:
|
990 |
+
:param origin:
|
991 |
+
:param max_dist:
|
992 |
+
:return: dict
|
993 |
+
"""
|
994 |
+
m = cv2.moments(hull)
|
995 |
+
if m["m00"] != 0:
|
996 |
+
cx_ = int(m["m10"] / m["m00"])
|
997 |
+
cy_ = int(m["m01"] / m["m00"])
|
998 |
+
dist_ = math.sqrt(math.pow(cx_ - origin.x, 2) + math.pow(cy_ - origin.y, 2))
|
999 |
+
dist_scaled_inverted = 1 - dist_ / max_dist
|
1000 |
+
res_ = dict(
|
1001 |
+
dist=dist_,
|
1002 |
+
cx=cx_,
|
1003 |
+
cy=cy_,
|
1004 |
+
dist_scaled_inverted=dist_scaled_inverted,
|
1005 |
+
area=cv2.contourArea(hull),
|
1006 |
+
scaled_area=cv2.contourArea(hull) * math.pow(dist_scaled_inverted, 2),
|
1007 |
+
)
|
1008 |
+
else:
|
1009 |
+
res_ = dict(
|
1010 |
+
dist=0,
|
1011 |
+
cx=0,
|
1012 |
+
cy=0,
|
1013 |
+
dist_scaled_inverted=0,
|
1014 |
+
area=0,
|
1015 |
+
scaled_area=0,
|
1016 |
+
)
|
1017 |
+
return res_
|
1018 |
+
|
1019 |
+
|
1020 |
+
def check_size(cnt, tolerance_area):
|
1021 |
+
return (tolerance_area is not None) and (
|
1022 |
+
(tolerance_area < 0) or cv2.contourArea(cnt) >= tolerance_area
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
|
1026 |
+
def is_contour_overlap(mask, cmp_contour, master_contour) -> bool:
|
1027 |
+
cmp_image = cv2.drawContours(np.zeros_like(mask), [cmp_contour], -1, 255, -1)
|
1028 |
+
master_image = cv2.drawContours(np.zeros_like(mask), [master_contour], -1, 255, -1)
|
1029 |
+
return cv2.bitwise_and(cmp_image, master_image).any() == True
|
1030 |
+
|
1031 |
+
|
1032 |
+
def is_distance_ok(mask, cmp_contour, master_contour, tolerance_distance=None) -> bool:
|
1033 |
+
# print(cv2.minEnclosingCircle(cmp_contour))
|
1034 |
+
cmp_image = enlarge_contours(
|
1035 |
+
cv2.drawContours(np.zeros_like(mask), [cmp_contour], -1, 255, -1),
|
1036 |
+
increase_by=tolerance_distance,
|
1037 |
+
)
|
1038 |
+
# print(cv2.minEnclosingCircle(get_external_contours(cmp_image)[0]))
|
1039 |
+
|
1040 |
+
# print(cv2.minEnclosingCircle(master_contour))
|
1041 |
+
master_image = enlarge_contours(
|
1042 |
+
cv2.drawContours(np.zeros_like(mask), [master_contour], -1, 255, -1),
|
1043 |
+
increase_by=tolerance_distance,
|
1044 |
+
)
|
1045 |
+
# print(cv2.minEnclosingCircle(get_external_contours(master_image)[0]))
|
1046 |
+
|
1047 |
+
bit_image = cv2.bitwise_and(cmp_image, master_image)
|
1048 |
+
return bit_image.any() == True
|
1049 |
+
|
1050 |
+
|
1051 |
+
def fast_check_contour(
|
1052 |
+
mask, cmp_contour, master_contour, tolerance_area=None, tolerance_distance=None
|
1053 |
+
):
|
1054 |
+
# Check contour intersection
|
1055 |
+
if is_contour_overlap(
|
1056 |
+
mask=mask, cmp_contour=cmp_contour, master_contour=master_contour
|
1057 |
+
):
|
1058 |
+
return tc.KLC_OVERLAPS
|
1059 |
+
|
1060 |
+
# Check contour distance
|
1061 |
+
ok_dist = is_distance_ok(mask, cmp_contour, master_contour, tolerance_distance)
|
1062 |
+
|
1063 |
+
# Check contour size
|
1064 |
+
ok_size = check_size(cnt=cmp_contour, tolerance_area=tolerance_area)
|
1065 |
+
|
1066 |
+
if ok_size and ok_dist:
|
1067 |
+
return tc.KLC_OK_TOLERANCE
|
1068 |
+
elif not ok_size and not ok_dist:
|
1069 |
+
return tc.KLC_SMALL_FAR
|
1070 |
+
elif not ok_size:
|
1071 |
+
return tc.KLC_SMALL
|
1072 |
+
elif not ok_dist:
|
1073 |
+
return tc.KLC_FAR
|
1074 |
+
|
1075 |
+
|
1076 |
+
# MARK: fast Keep linled contours
|
1077 |
+
def fast_keep_linked_contours(
|
1078 |
+
src_mask,
|
1079 |
+
tolerance_distance: int,
|
1080 |
+
tolerance_area: int,
|
1081 |
+
morph_op: Morphologer,
|
1082 |
+
min_contour_size: int = 0,
|
1083 |
+
epsilon: float = 0.001,
|
1084 |
+
skip_linked_contours: bool = False,
|
1085 |
+
mean_channel_data: dict = None,
|
1086 |
+
source_image=None,
|
1087 |
+
) -> dict:
|
1088 |
+
mask = src_mask.copy()
|
1089 |
+
# Delete all small contours
|
1090 |
+
if min_contour_size > 0:
|
1091 |
+
mask = filter_contours(mask=mask, min_contour_size=min_contour_size)
|
1092 |
+
|
1093 |
+
# Apply morphology operation to remove vnoise
|
1094 |
+
if morph_op is not None:
|
1095 |
+
mask = morph_op(mask)
|
1096 |
+
|
1097 |
+
contours = get_external_contours(mask)
|
1098 |
+
# print(len(contours))
|
1099 |
+
# ret = []
|
1100 |
+
# canvas = cv2.drawContours(
|
1101 |
+
# cv2.merge([np.zeros_like(src_mask) for _ in range(3)]),
|
1102 |
+
# contours,
|
1103 |
+
# -1,
|
1104 |
+
# tc.C_WHITE,
|
1105 |
+
# -1,
|
1106 |
+
# )
|
1107 |
+
# canvas = cv2.drawContours(canvas, contours, -1, tc.C_FUCHSIA, 4)
|
1108 |
+
# ret.append(canvas)
|
1109 |
+
|
1110 |
+
# Skip if not Enough contours
|
1111 |
+
if len(contours) == 0:
|
1112 |
+
return {
|
1113 |
+
"im_clean_mask": np.zeros_like(src_mask),
|
1114 |
+
"im_clean_mask_demo": cv2.merge(
|
1115 |
+
[
|
1116 |
+
np.zeros_like(src_mask),
|
1117 |
+
np.zeros_like(src_mask),
|
1118 |
+
np.zeros_like(src_mask),
|
1119 |
+
]
|
1120 |
+
),
|
1121 |
+
}
|
1122 |
+
elif len(contours) == 1 or skip_linked_contours is True:
|
1123 |
+
clean_mask = cv2.bitwise_and(
|
1124 |
+
src_mask,
|
1125 |
+
cv2.drawContours(
|
1126 |
+
image=np.zeros_like(mask),
|
1127 |
+
contours=contours,
|
1128 |
+
contourIdx=-1,
|
1129 |
+
color=255,
|
1130 |
+
thickness=-1,
|
1131 |
+
),
|
1132 |
+
)
|
1133 |
+
return {
|
1134 |
+
"im_clean_mask": clean_mask,
|
1135 |
+
"im_clean_mask_demo": cv2.merge(
|
1136 |
+
[
|
1137 |
+
src_mask,
|
1138 |
+
clean_mask,
|
1139 |
+
cv2.drawContours(
|
1140 |
+
image=np.zeros_like(mask),
|
1141 |
+
contours=[
|
1142 |
+
cv2.approxPolyDP(
|
1143 |
+
cnt, epsilon * cv2.arcLength(cnt, True), True
|
1144 |
+
)
|
1145 |
+
for cnt in contours
|
1146 |
+
],
|
1147 |
+
contourIdx=-1,
|
1148 |
+
color=255,
|
1149 |
+
thickness=-1,
|
1150 |
+
),
|
1151 |
+
]
|
1152 |
+
),
|
1153 |
+
}
|
1154 |
+
|
1155 |
+
# Find root contour
|
1156 |
+
if mean_channel_data is not None and source_image is not None:
|
1157 |
+
# Use contour with matching mean color
|
1158 |
+
channel = get_channel(
|
1159 |
+
image=source_image,
|
1160 |
+
color_space=mean_channel_data["color_space"],
|
1161 |
+
channel=mean_channel_data["channel"],
|
1162 |
+
)
|
1163 |
+
df = pd.DataFrame(
|
1164 |
+
data={
|
1165 |
+
"area": [cv2.contourArea(c) for c in contours],
|
1166 |
+
"mean_dist": [
|
1167 |
+
abs(
|
1168 |
+
cv2.mean(
|
1169 |
+
src=channel.flatten(),
|
1170 |
+
mask=cv2.drawContours(
|
1171 |
+
np.zeros_like(mask), [c], -1, 255, -1
|
1172 |
+
).flatten(),
|
1173 |
+
)[0]
|
1174 |
+
- mean_channel_data["mean"]
|
1175 |
+
)
|
1176 |
+
for c in contours
|
1177 |
+
],
|
1178 |
+
}
|
1179 |
+
)
|
1180 |
+
if abs(df.mean_dist.min() - df.mean_dist.max()) < 4:
|
1181 |
+
root_index = df[df.area == df.area.max()].index[0]
|
1182 |
+
else:
|
1183 |
+
X = np.reshape(df.mean_dist.to_list(), (-1, 1))
|
1184 |
+
ms = MeanShift()
|
1185 |
+
ms.fit(X)
|
1186 |
+
df["level"] = ms.predict(X)
|
1187 |
+
df["level_dist_min"] = (
|
1188 |
+
df.groupby("level").transform(lambda x: x.mean()).mean_dist
|
1189 |
+
)
|
1190 |
+
df = df[df["level_dist_min"] == df["level_dist_min"].min()]
|
1191 |
+
root_index = df[df.area == df.area.max()].index[0]
|
1192 |
+
|
1193 |
+
root_contour = contours[root_index]
|
1194 |
+
good_contours = [contours.pop(root_index)]
|
1195 |
+
unknown_contours = []
|
1196 |
+
else:
|
1197 |
+
# Use bigger contour in the center
|
1198 |
+
|
1199 |
+
# Find the largest contour
|
1200 |
+
root_contour = contours[0]
|
1201 |
+
big_idx = 0
|
1202 |
+
h, w = src_mask.shape
|
1203 |
+
roi_root = Circle(w // 2, h // 2, max(h, w) // 2)
|
1204 |
+
dist_max = roi_root.r
|
1205 |
+
|
1206 |
+
max_area = 0
|
1207 |
+
for i, contour in enumerate(contours):
|
1208 |
+
morph_dict = get_distance_data(contour, roi_root, dist_max)
|
1209 |
+
|
1210 |
+
if morph_dict["scaled_area"] > max_area:
|
1211 |
+
max_area = morph_dict["scaled_area"]
|
1212 |
+
root_contour = contour
|
1213 |
+
big_idx = i
|
1214 |
+
|
1215 |
+
# parse all contours and switch
|
1216 |
+
good_contours = [contours.pop(big_idx)]
|
1217 |
+
unknown_contours = []
|
1218 |
+
|
1219 |
+
# print(len(contours) + len(good_contours))
|
1220 |
+
# canvas = cv2.drawContours(
|
1221 |
+
# cv2.merge([np.zeros_like(src_mask) for _ in range(3)]),
|
1222 |
+
# contours,
|
1223 |
+
# -1,
|
1224 |
+
# tc.C_WHITE,
|
1225 |
+
# -1,
|
1226 |
+
# )
|
1227 |
+
# canvas = cv2.drawContours(canvas, contours, -1, tc.C_FUCHSIA, 4)
|
1228 |
+
# # canvas = cv2.drawContours(canvas, good_contours, -1, tc.C_GREEN, -1)
|
1229 |
+
# canvas = cv2.drawContours(canvas, good_contours, -1, tc.C_LIME, 4)
|
1230 |
+
# ret.append(canvas)
|
1231 |
+
# return ret
|
1232 |
+
|
1233 |
+
while len(contours) > 0:
|
1234 |
+
contour = contours.pop()
|
1235 |
+
res = fast_check_contour(
|
1236 |
+
mask=src_mask,
|
1237 |
+
cmp_contour=contour,
|
1238 |
+
master_contour=root_contour,
|
1239 |
+
tolerance_area=tolerance_area,
|
1240 |
+
tolerance_distance=tolerance_distance,
|
1241 |
+
)
|
1242 |
+
if res == tc.KLC_FULLY_INSIDE:
|
1243 |
+
pass
|
1244 |
+
elif res in [tc.KLC_OVERLAPS, tc.KLC_OK_TOLERANCE]:
|
1245 |
+
good_contours.append(contour)
|
1246 |
+
else:
|
1247 |
+
unknown_contours.append(contour)
|
1248 |
+
|
1249 |
+
# Try to aggregate unknown contours to good contours
|
1250 |
+
stable = False
|
1251 |
+
while not stable:
|
1252 |
+
stable = True
|
1253 |
+
i = 0
|
1254 |
+
iter_count = 1
|
1255 |
+
while i < len(unknown_contours):
|
1256 |
+
contour = unknown_contours[i]
|
1257 |
+
res = tc.KLC_SMALL_FAR
|
1258 |
+
for good_contour in good_contours:
|
1259 |
+
res = fast_check_contour(
|
1260 |
+
mask=src_mask,
|
1261 |
+
cmp_contour=contour,
|
1262 |
+
master_contour=good_contour,
|
1263 |
+
tolerance_area=tolerance_area,
|
1264 |
+
tolerance_distance=tolerance_distance,
|
1265 |
+
)
|
1266 |
+
if res == tc.KLC_FULLY_INSIDE:
|
1267 |
+
del unknown_contours[i]
|
1268 |
+
stable = False
|
1269 |
+
break
|
1270 |
+
elif res in [tc.KLC_OVERLAPS, tc.KLC_OK_TOLERANCE]:
|
1271 |
+
good_contours.append(unknown_contours.pop(i))
|
1272 |
+
stable = False
|
1273 |
+
break
|
1274 |
+
elif res in [
|
1275 |
+
tc.KLC_SMALL_FAR,
|
1276 |
+
tc.KLC_SMALL,
|
1277 |
+
tc.KLC_FAR,
|
1278 |
+
]:
|
1279 |
+
pass
|
1280 |
+
if res in [
|
1281 |
+
tc.KLC_SMALL_FAR,
|
1282 |
+
tc.KLC_SMALL,
|
1283 |
+
tc.KLC_FAR,
|
1284 |
+
]:
|
1285 |
+
i += 1
|
1286 |
+
iter_count += 1
|
1287 |
+
|
1288 |
+
# At this point we have the zone were the contours are allowed to be
|
1289 |
+
contour_template = cv2.bitwise_and(
|
1290 |
+
cv2.drawContours(np.zeros_like(mask), good_contours, -1, 255, -1),
|
1291 |
+
mask,
|
1292 |
+
)
|
1293 |
+
out_mask = np.zeros_like(mask)
|
1294 |
+
for cnt in get_contours(src_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE):
|
1295 |
+
if (
|
1296 |
+
cv2.contourArea(cnt, oriented=True) < 0
|
1297 |
+
and cv2.bitwise_and(
|
1298 |
+
contour_template,
|
1299 |
+
cv2.drawContours(np.zeros_like(mask), [cnt], 0, 255, -1),
|
1300 |
+
).any()
|
1301 |
+
):
|
1302 |
+
out_mask = cv2.drawContours(out_mask, [cnt], 0, 255, -1)
|
1303 |
+
|
1304 |
+
im_clean_mask = cv2.bitwise_and(out_mask, src_mask)
|
1305 |
+
|
1306 |
+
im_clean_mask_demo = cv2.merge(
|
1307 |
+
[np.zeros_like(src_mask), np.zeros_like(src_mask), np.zeros_like(src_mask)]
|
1308 |
+
)
|
1309 |
+
for contour in good_contours:
|
1310 |
+
im_clean_mask_demo = cv2.drawContours(
|
1311 |
+
im_clean_mask_demo, [contour], 0, tc.C_WHITE, -1
|
1312 |
+
)
|
1313 |
+
im_clean_mask_demo = cv2.drawContours(
|
1314 |
+
im_clean_mask_demo, [root_contour], 0, tc.C_GREEN, -1
|
1315 |
+
)
|
1316 |
+
for contour in unknown_contours:
|
1317 |
+
ok_size = check_size(cnt=contour, tolerance_area=tolerance_area)
|
1318 |
+
ok_distance = is_distance_ok(
|
1319 |
+
mask=im_clean_mask,
|
1320 |
+
cmp_contour=contour,
|
1321 |
+
master_contour=good_contours[0],
|
1322 |
+
tolerance_distance=tolerance_distance,
|
1323 |
+
)
|
1324 |
+
contour_color = (
|
1325 |
+
bgr_to_rgb(tc.C_FUCHSIA)
|
1326 |
+
if ok_distance is False and ok_size is False
|
1327 |
+
else bgr_to_rgb(tc.C_RED) if ok_size is False else bgr_to_rgb(tc.C_BLUE)
|
1328 |
+
)
|
1329 |
+
im_clean_mask_demo = cv2.drawContours(
|
1330 |
+
im_clean_mask_demo, [contour], 0, contour_color, -1
|
1331 |
+
)
|
1332 |
+
im_clean_mask_demo = cv2.bitwise_and(
|
1333 |
+
im_clean_mask_demo, im_clean_mask_demo, mask=src_mask
|
1334 |
+
)
|
1335 |
+
return {
|
1336 |
+
"im_clean_mask": im_clean_mask,
|
1337 |
+
"im_clean_mask_demo": im_clean_mask_demo,
|
1338 |
+
}
|
1339 |
+
|
1340 |
+
|
1341 |
+
def get_cnt_center(cnt):
|
1342 |
+
mmnt = cv2.moments(cnt)
|
1343 |
+
return int(mmnt["m10"] / mmnt["m00"]), int(mmnt["m01"] / mmnt["m00"])
|
1344 |
+
|
1345 |
+
|
1346 |
+
def dbg_min_distance(mask, cnt1, cnt2):
|
1347 |
+
if cv2.bitwise_and(
|
1348 |
+
cv2.drawContours(mask, [cnt1], -1, 255, -1),
|
1349 |
+
cv2.drawContours(mask, [cnt2], -1, 255, -1),
|
1350 |
+
).any():
|
1351 |
+
return 0, get_cnt_center(cnt1), get_cnt_center(cnt2)
|
1352 |
+
min_dist = 1000000000000
|
1353 |
+
for cur_pt1 in cnt1:
|
1354 |
+
for cur_pt2 in cnt2:
|
1355 |
+
cur_dist = cv2.norm(cur_pt1, cur_pt2)
|
1356 |
+
if abs(cur_dist) < min_dist:
|
1357 |
+
min_dist = abs(cur_dist)
|
1358 |
+
pt1 = cur_pt1
|
1359 |
+
pt2 = cur_pt2
|
1360 |
+
return min_dist, pt1[0], pt2[0]
|
1361 |
+
|
1362 |
+
|
1363 |
+
def min_distance(mask, cnt1, cnt2):
|
1364 |
+
if cv2.bitwise_and(
|
1365 |
+
cv2.drawContours(np.zeros_like(mask), [cnt1], -1, 255, -1),
|
1366 |
+
cv2.drawContours(np.zeros_like(mask), [cnt2], -1, 255, -1),
|
1367 |
+
).any():
|
1368 |
+
return 0
|
1369 |
+
return min(*[cv2.norm(pt1, pt2) for pt1, pt2 in itertools.product(cnt1, cnt2)])
|
1370 |
+
|
1371 |
+
|
1372 |
+
def check_dist(distance, tolerance_distance):
|
1373 |
+
return (tolerance_distance is not None) and (
|
1374 |
+
tolerance_distance < 0 or distance <= tolerance_distance
|
1375 |
+
)
|
1376 |
+
|
1377 |
+
|
1378 |
+
def check_hull(
|
1379 |
+
mask, cmp_hull, master_hull, tolerance_area=None, tolerance_distance=None
|
1380 |
+
):
|
1381 |
+
# Check hull intersection
|
1382 |
+
if cv2.bitwise_and(
|
1383 |
+
cv2.drawContours(np.zeros_like(mask), [cmp_hull], -1, 255, -1),
|
1384 |
+
cv2.drawContours(np.zeros_like(mask), [master_hull], -1, 255, -1),
|
1385 |
+
).any():
|
1386 |
+
return tc.KLC_OVERLAPS
|
1387 |
+
|
1388 |
+
# Check point to point
|
1389 |
+
min_dist = min_distance(mask=mask, cnt1=cmp_hull, cnt2=master_hull)
|
1390 |
+
if min_dist <= 0:
|
1391 |
+
return tc.KLC_OVERLAPS
|
1392 |
+
else:
|
1393 |
+
ok_size = check_size(cnt=cmp_hull, tolerance_area=tolerance_area)
|
1394 |
+
ok_dist = check_dist(distance=min_dist, tolerance_distance=tolerance_distance)
|
1395 |
+
if ok_size and ok_dist:
|
1396 |
+
return tc.KLC_OK_TOLERANCE
|
1397 |
+
elif not ok_size and not ok_dist:
|
1398 |
+
return tc.KLC_SMALL_FAR
|
1399 |
+
elif not ok_size:
|
1400 |
+
return tc.KLC_SMALL
|
1401 |
+
elif not ok_dist:
|
1402 |
+
return tc.KLC_FAR
|
1403 |
+
|
1404 |
+
|
1405 |
+
# MARK: Keep linled contours
|
1406 |
+
def keep_linked_contours(
|
1407 |
+
src_mask,
|
1408 |
+
tolerance_distance: int,
|
1409 |
+
tolerance_area: int,
|
1410 |
+
morph_op: Morphologer,
|
1411 |
+
min_contour_size: int = 0,
|
1412 |
+
epsilon: float = 0.001,
|
1413 |
+
skip_linked_contours: bool = False,
|
1414 |
+
mean_channel_data: dict = None,
|
1415 |
+
source_image=None,
|
1416 |
+
) -> dict:
|
1417 |
+
mask = src_mask.copy()
|
1418 |
+
# Delete all small contours
|
1419 |
+
if min_contour_size > 0:
|
1420 |
+
mask = filter_contours(mask=mask, min_contour_size=min_contour_size)
|
1421 |
+
|
1422 |
+
# Apply morphology operation to remove vnoise
|
1423 |
+
if morph_op is not None:
|
1424 |
+
mask = morph_op(mask)
|
1425 |
+
|
1426 |
+
contours = get_external_contours(mask)
|
1427 |
+
|
1428 |
+
if len(contours) == 0:
|
1429 |
+
return {
|
1430 |
+
"im_clean_mask": np.zeros_like(src_mask),
|
1431 |
+
"im_clean_mask_demo": cv2.merge(
|
1432 |
+
[
|
1433 |
+
np.zeros_like(src_mask),
|
1434 |
+
np.zeros_like(src_mask),
|
1435 |
+
np.zeros_like(src_mask),
|
1436 |
+
]
|
1437 |
+
),
|
1438 |
+
}
|
1439 |
+
elif len(contours) == 1 or skip_linked_contours is True:
|
1440 |
+
clean_mask = cv2.bitwise_and(
|
1441 |
+
src_mask,
|
1442 |
+
cv2.drawContours(
|
1443 |
+
image=np.zeros_like(mask),
|
1444 |
+
contours=contours,
|
1445 |
+
contourIdx=-1,
|
1446 |
+
color=255,
|
1447 |
+
thickness=-1,
|
1448 |
+
),
|
1449 |
+
)
|
1450 |
+
return {
|
1451 |
+
"im_clean_mask": clean_mask,
|
1452 |
+
"im_clean_mask_demo": cv2.merge(
|
1453 |
+
[
|
1454 |
+
src_mask,
|
1455 |
+
clean_mask,
|
1456 |
+
cv2.drawContours(
|
1457 |
+
image=np.zeros_like(mask),
|
1458 |
+
contours=[
|
1459 |
+
cv2.approxPolyDP(
|
1460 |
+
cnt, epsilon * cv2.arcLength(cnt, True), True
|
1461 |
+
)
|
1462 |
+
for cnt in contours
|
1463 |
+
],
|
1464 |
+
contourIdx=-1,
|
1465 |
+
color=255,
|
1466 |
+
thickness=-1,
|
1467 |
+
),
|
1468 |
+
]
|
1469 |
+
),
|
1470 |
+
}
|
1471 |
+
|
1472 |
+
if mean_channel_data is not None and source_image is not None:
|
1473 |
+
channel = get_channel(
|
1474 |
+
image=source_image,
|
1475 |
+
color_space=mean_channel_data["color_space"],
|
1476 |
+
channel=mean_channel_data["channel"],
|
1477 |
+
)
|
1478 |
+
contours = get_external_contours(mask)
|
1479 |
+
df = pd.DataFrame(
|
1480 |
+
data={
|
1481 |
+
"area": [cv2.contourArea(c) for c in contours],
|
1482 |
+
"mean_dist": [
|
1483 |
+
abs(
|
1484 |
+
cv2.mean(
|
1485 |
+
src=channel.flatten(),
|
1486 |
+
mask=cv2.drawContours(
|
1487 |
+
np.zeros_like(mask), [c], -1, 255, -1
|
1488 |
+
).flatten(),
|
1489 |
+
)[0]
|
1490 |
+
- mean_channel_data["mean"]
|
1491 |
+
)
|
1492 |
+
for c in contours
|
1493 |
+
],
|
1494 |
+
}
|
1495 |
+
)
|
1496 |
+
if abs(df.mean_dist.min() - df.mean_dist.max()) < 4:
|
1497 |
+
root_index = df[df.area == df.area.max()].index[0]
|
1498 |
+
else:
|
1499 |
+
X = np.reshape(df.mean_dist.to_list(), (-1, 1))
|
1500 |
+
ms = MeanShift()
|
1501 |
+
ms.fit(X)
|
1502 |
+
df["level"] = ms.predict(X)
|
1503 |
+
df["level_dist_min"] = (
|
1504 |
+
df.groupby("level").transform(lambda x: x.mean()).mean_dist
|
1505 |
+
)
|
1506 |
+
df = df[df["level_dist_min"] == df["level_dist_min"].min()]
|
1507 |
+
root_index = df[df.area == df.area.max()].index[0]
|
1508 |
+
|
1509 |
+
hulls = [
|
1510 |
+
cv2.approxPolyDP(cnt, epsilon * cv2.arcLength(cnt, True), True)
|
1511 |
+
for cnt in contours
|
1512 |
+
]
|
1513 |
+
root_hull = hulls[root_index]
|
1514 |
+
good_hulls = [hulls.pop(root_index)]
|
1515 |
+
unknown_hulls = []
|
1516 |
+
else:
|
1517 |
+
# Transform all contours into approximations
|
1518 |
+
hulls = [
|
1519 |
+
cv2.approxPolyDP(cnt, epsilon * cv2.arcLength(cnt, True), True)
|
1520 |
+
for cnt in contours
|
1521 |
+
]
|
1522 |
+
|
1523 |
+
# Find the largest hull
|
1524 |
+
root_hull = hulls[0]
|
1525 |
+
big_idx = 0
|
1526 |
+
h, w = src_mask.shape
|
1527 |
+
roi_root = Circle(w // 2, h // 2, max(h, w) // 2)
|
1528 |
+
dist_max = roi_root.r
|
1529 |
+
|
1530 |
+
max_area = 0
|
1531 |
+
for i, hull in enumerate(hulls):
|
1532 |
+
morph_dict = get_distance_data(hull, roi_root, dist_max)
|
1533 |
+
|
1534 |
+
if morph_dict["scaled_area"] > max_area:
|
1535 |
+
max_area = morph_dict["scaled_area"]
|
1536 |
+
root_hull = hull
|
1537 |
+
big_idx = i
|
1538 |
+
|
1539 |
+
# parse all hulls and switch
|
1540 |
+
good_hulls = [hulls.pop(big_idx)]
|
1541 |
+
unknown_hulls = []
|
1542 |
+
|
1543 |
+
while len(hulls) > 0:
|
1544 |
+
hull = hulls.pop()
|
1545 |
+
res = check_hull(
|
1546 |
+
mask=src_mask,
|
1547 |
+
cmp_hull=hull,
|
1548 |
+
master_hull=root_hull,
|
1549 |
+
tolerance_area=tolerance_area,
|
1550 |
+
tolerance_distance=tolerance_distance,
|
1551 |
+
)
|
1552 |
+
if res == tc.KLC_FULLY_INSIDE:
|
1553 |
+
pass
|
1554 |
+
elif res in [tc.KLC_OVERLAPS, tc.KLC_OK_TOLERANCE]:
|
1555 |
+
good_hulls.append(hull)
|
1556 |
+
else:
|
1557 |
+
unknown_hulls.append(hull)
|
1558 |
+
|
1559 |
+
# Try to aggregate unknown hulls to good hulls
|
1560 |
+
stable = False
|
1561 |
+
while not stable:
|
1562 |
+
stable = True
|
1563 |
+
i = 0
|
1564 |
+
iter_count = 1
|
1565 |
+
while i < len(unknown_hulls):
|
1566 |
+
hull = unknown_hulls[i]
|
1567 |
+
res = tc.KLC_SMALL_FAR
|
1568 |
+
for good_hull in good_hulls:
|
1569 |
+
res = check_hull(
|
1570 |
+
mask=src_mask,
|
1571 |
+
cmp_hull=hull,
|
1572 |
+
master_hull=good_hull,
|
1573 |
+
tolerance_area=tolerance_area,
|
1574 |
+
tolerance_distance=tolerance_distance,
|
1575 |
+
)
|
1576 |
+
if res == tc.KLC_FULLY_INSIDE:
|
1577 |
+
del unknown_hulls[i]
|
1578 |
+
stable = False
|
1579 |
+
break
|
1580 |
+
elif res in [tc.KLC_OVERLAPS, tc.KLC_OK_TOLERANCE]:
|
1581 |
+
good_hulls.append(unknown_hulls.pop(i))
|
1582 |
+
stable = False
|
1583 |
+
break
|
1584 |
+
elif res in [
|
1585 |
+
tc.KLC_SMALL_FAR,
|
1586 |
+
tc.KLC_SMALL,
|
1587 |
+
tc.KLC_FAR,
|
1588 |
+
]:
|
1589 |
+
pass
|
1590 |
+
if res in [
|
1591 |
+
tc.KLC_SMALL_FAR,
|
1592 |
+
tc.KLC_SMALL,
|
1593 |
+
tc.KLC_FAR,
|
1594 |
+
]:
|
1595 |
+
i += 1
|
1596 |
+
iter_count += 1
|
1597 |
+
|
1598 |
+
# At this point we have the zone were the contours are allowed to be
|
1599 |
+
hull_template = cv2.bitwise_and(
|
1600 |
+
cv2.drawContours(np.zeros_like(mask), good_hulls, -1, 255, -1),
|
1601 |
+
mask,
|
1602 |
+
)
|
1603 |
+
out_mask = np.zeros_like(mask)
|
1604 |
+
for cnt in get_contours(src_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE):
|
1605 |
+
if (
|
1606 |
+
cv2.contourArea(cnt, oriented=True) < 0
|
1607 |
+
and cv2.bitwise_and(
|
1608 |
+
hull_template,
|
1609 |
+
cv2.drawContours(np.zeros_like(mask), [cnt], 0, 255, -1),
|
1610 |
+
).any()
|
1611 |
+
):
|
1612 |
+
out_mask = cv2.drawContours(out_mask, [cnt], 0, 255, -1)
|
1613 |
+
|
1614 |
+
im_clean_mask = cv2.bitwise_and(out_mask, src_mask)
|
1615 |
+
|
1616 |
+
im_clean_mask_demo = cv2.merge(
|
1617 |
+
[np.zeros_like(src_mask), np.zeros_like(src_mask), np.zeros_like(src_mask)]
|
1618 |
+
)
|
1619 |
+
for hull in good_hulls:
|
1620 |
+
im_clean_mask_demo = cv2.drawContours(
|
1621 |
+
im_clean_mask_demo, [hull], 0, tc.C_WHITE, -1
|
1622 |
+
)
|
1623 |
+
im_clean_mask_demo = cv2.drawContours(
|
1624 |
+
im_clean_mask_demo, [root_hull], 0, tc.C_GREEN, -1
|
1625 |
+
)
|
1626 |
+
for hull in unknown_hulls:
|
1627 |
+
ok_size = check_size(cnt=hull, tolerance_area=tolerance_area)
|
1628 |
+
min_dist = (
|
1629 |
+
min_distance(im_clean_mask_demo, hull, good_hulls[0])
|
1630 |
+
if len(good_hulls) == 1
|
1631 |
+
else min(
|
1632 |
+
*[
|
1633 |
+
min_distance(im_clean_mask_demo, hull, good_hull)
|
1634 |
+
for good_hull in good_hulls
|
1635 |
+
]
|
1636 |
+
)
|
1637 |
+
)
|
1638 |
+
ok_distance = check_dist(distance=min_dist, tolerance_distance=tolerance_area)
|
1639 |
+
contour_color = (
|
1640 |
+
bgr_to_rgb(tc.C_FUCHSIA)
|
1641 |
+
if ok_distance is False and ok_size is False
|
1642 |
+
else bgr_to_rgb(tc.C_RED) if ok_size is False else bgr_to_rgb(tc.C_BLUE)
|
1643 |
+
)
|
1644 |
+
im_clean_mask_demo = cv2.drawContours(
|
1645 |
+
im_clean_mask_demo, [hull], 0, contour_color, -1
|
1646 |
+
)
|
1647 |
+
im_clean_mask_demo = cv2.bitwise_and(
|
1648 |
+
im_clean_mask_demo, im_clean_mask_demo, mask=src_mask
|
1649 |
+
)
|
1650 |
+
return {
|
1651 |
+
"im_clean_mask": im_clean_mask,
|
1652 |
+
"im_clean_mask_demo": im_clean_mask_demo,
|
1653 |
+
}
|
1654 |
+
|
1655 |
+
|
1656 |
+
def get_external_contours(mask):
|
1657 |
+
external_contours = []
|
1658 |
+
contours, hierarchys = cv2.findContours(
|
1659 |
+
mask, mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_NONE
|
1660 |
+
)
|
1661 |
+
if len(contours) == 0:
|
1662 |
+
return []
|
1663 |
+
for cnt, hier in zip(contours, hierarchys[0]):
|
1664 |
+
if hier[-1] == -1:
|
1665 |
+
external_contours.append(cnt)
|
1666 |
+
if len(external_contours) == 0:
|
1667 |
+
return []
|
1668 |
+
external_contours.sort(key=lambda x: cv2.contourArea(x, oriented=False))
|
1669 |
+
return external_contours
|
1670 |
+
|
1671 |
+
|
1672 |
+
def get_internal_contours(mask):
|
1673 |
+
internal_contours = []
|
1674 |
+
contours, hierarchys = cv2.findContours(
|
1675 |
+
mask, mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_SIMPLE
|
1676 |
+
)
|
1677 |
+
if len(contours) == 0:
|
1678 |
+
return []
|
1679 |
+
for cnt, hier in zip(contours, hierarchys[0]):
|
1680 |
+
if hier[-1] != -1:
|
1681 |
+
internal_contours.append(cnt)
|
1682 |
+
if len(internal_contours) == 0:
|
1683 |
+
return []
|
1684 |
+
internal_contours.sort(key=lambda x: cv2.contourArea(x, oriented=False))
|
1685 |
+
return internal_contours
|
1686 |
+
|
1687 |
+
|
1688 |
+
def get_filled_contours(mask):
|
1689 |
+
return [
|
1690 |
+
cnt
|
1691 |
+
for cnt in cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
|
1692 |
+
if cv2.bitwise_and(
|
1693 |
+
mask, cv2.drawContours(np.zeros_like(mask), [cnt], -1, 255, -1)
|
1694 |
+
).any()
|
1695 |
+
== True
|
1696 |
+
]
|
1697 |
+
|
1698 |
+
|
1699 |
+
def get_main_contour(mask):
|
1700 |
+
external_contours = get_external_contours(mask)
|
1701 |
+
if len(external_contours) == 0:
|
1702 |
+
return None
|
1703 |
+
elif len(external_contours) == 1:
|
1704 |
+
return external_contours[0]
|
1705 |
+
else:
|
1706 |
+
big_idx = 0
|
1707 |
+
h, w = mask.shape
|
1708 |
+
roi_root = Circle(w // 2, h // 2, max(h, w) // 2)
|
1709 |
+
dist_max = roi_root.r
|
1710 |
+
|
1711 |
+
max_area = 0
|
1712 |
+
for i, hull in enumerate(external_contours):
|
1713 |
+
morph_dict = get_distance_data(hull, roi_root, dist_max)
|
1714 |
+
|
1715 |
+
if morph_dict["scaled_area"] > max_area:
|
1716 |
+
max_area = morph_dict["scaled_area"]
|
1717 |
+
big_idx = i
|
1718 |
+
|
1719 |
+
return external_contours[big_idx]
|
1720 |
+
|
1721 |
+
|
1722 |
+
def get_suspect_contours(mask):
|
1723 |
+
external_contours = get_external_contours(mask)
|
1724 |
+
if len(external_contours) == 0:
|
1725 |
+
return []
|
1726 |
+
big_idx = 0
|
1727 |
+
h, w = mask.shape
|
1728 |
+
roi_root = Circle(w // 2, h // 2, max(h, w) // 2)
|
1729 |
+
dist_max = roi_root.r
|
1730 |
+
|
1731 |
+
max_area = 0
|
1732 |
+
for i, hull in enumerate(external_contours):
|
1733 |
+
morph_dict = get_distance_data(hull, roi_root, dist_max)
|
1734 |
+
|
1735 |
+
if morph_dict["scaled_area"] > max_area:
|
1736 |
+
max_area = morph_dict["scaled_area"]
|
1737 |
+
big_idx = i
|
1738 |
+
|
1739 |
+
external_contours.pop(big_idx)
|
1740 |
+
|
1741 |
+
return external_contours
|
1742 |
+
|
1743 |
+
|
1744 |
+
def get_contours_dict(mask):
|
1745 |
+
main = get_main_contour(mask)
|
1746 |
+
internal = get_internal_contours(mask)
|
1747 |
+
suspect = get_suspect_contours(mask)
|
1748 |
+
ret = {}
|
1749 |
+
if main is not None:
|
1750 |
+
ret["main"] = main
|
1751 |
+
if internal:
|
1752 |
+
ret["internal"] = internal
|
1753 |
+
if suspect:
|
1754 |
+
ret["suspect"] = suspect
|
1755 |
+
return ret
|
1756 |
+
|
1757 |
+
|
1758 |
+
def find_matches(
|
1759 |
+
previous_image,
|
1760 |
+
previous_mask,
|
1761 |
+
current_image,
|
1762 |
+
current_mask,
|
1763 |
+
safe_ratio: float = 0.5,
|
1764 |
+
plot_debug: dict = {},
|
1765 |
+
):
|
1766 |
+
desc_extractor = SIFT()
|
1767 |
+
# Previous image
|
1768 |
+
masked_previous_image = cv2.equalizeHist(
|
1769 |
+
cv2.cvtColor(
|
1770 |
+
cv2.bitwise_and(previous_image, previous_image, mask=previous_mask),
|
1771 |
+
cv2.COLOR_RGB2GRAY,
|
1772 |
+
)
|
1773 |
+
)
|
1774 |
+
desc_extractor.detect_and_extract(masked_previous_image)
|
1775 |
+
kp_previous = desc_extractor.keypoints
|
1776 |
+
desc_previous = desc_extractor.descriptors
|
1777 |
+
# Current image
|
1778 |
+
masked_current_image = cv2.equalizeHist(
|
1779 |
+
cv2.cvtColor(
|
1780 |
+
cv2.bitwise_and(current_image, current_image, mask=current_mask),
|
1781 |
+
cv2.COLOR_RGB2GRAY,
|
1782 |
+
)
|
1783 |
+
)
|
1784 |
+
desc_extractor.detect_and_extract(masked_current_image)
|
1785 |
+
kp_current = desc_extractor.keypoints
|
1786 |
+
desc_current = desc_extractor.descriptors
|
1787 |
+
# Find matches
|
1788 |
+
matches = match_descriptors(
|
1789 |
+
desc_previous, desc_current, max_ratio=0.8, cross_check=True
|
1790 |
+
)
|
1791 |
+
matches_previous = kp_previous[matches[:, 0]]
|
1792 |
+
matches_current = kp_current[matches[:, 1]]
|
1793 |
+
distances = np.array(
|
1794 |
+
[np.linalg.norm(p1 - p2) for p1, p2 in zip(matches_previous, matches_current)]
|
1795 |
+
)
|
1796 |
+
matches_previous = matches_previous[
|
1797 |
+
(distances < np.median(distances) / safe_ratio)
|
1798 |
+
& (distances > np.median(distances) * safe_ratio)
|
1799 |
+
]
|
1800 |
+
matches_current = matches_current[
|
1801 |
+
(distances < np.median(distances) / safe_ratio)
|
1802 |
+
& (distances > np.median(distances) * safe_ratio)
|
1803 |
+
]
|
1804 |
+
if plot_debug:
|
1805 |
+
if "ax" in plot_debug:
|
1806 |
+
ax = plot_debug["ax"]
|
1807 |
+
else:
|
1808 |
+
_, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 10))
|
1809 |
+
plot_matches(
|
1810 |
+
ax=ax,
|
1811 |
+
image1=plot_debug["previous"],
|
1812 |
+
image2=plot_debug["current"],
|
1813 |
+
keypoints1=kp_previous,
|
1814 |
+
keypoints2=kp_current,
|
1815 |
+
matches=matches,
|
1816 |
+
only_matches=plot_debug.get("only_matches", True),
|
1817 |
+
)
|
1818 |
+
ax.axis("off")
|
1819 |
+
if "title" in plot_debug:
|
1820 |
+
ax.set_title(plot_debug["title"])
|
1821 |
+
if "ax" not in plot_debug:
|
1822 |
+
plt.show()
|
1823 |
+
|
1824 |
+
return matches_previous, matches_current
|
1825 |
+
|
1826 |
+
|
1827 |
+
def find_rotation_anlge(
|
1828 |
+
previous_image,
|
1829 |
+
previous_mask,
|
1830 |
+
current_image,
|
1831 |
+
current_mask,
|
1832 |
+
plot_debug: dict = {},
|
1833 |
+
):
|
1834 |
+
matches_previous, matches_current = find_matches(
|
1835 |
+
previous_image=previous_image,
|
1836 |
+
previous_mask=previous_mask,
|
1837 |
+
current_image=current_image,
|
1838 |
+
current_mask=current_mask,
|
1839 |
+
plot_debug=plot_debug,
|
1840 |
+
)
|
1841 |
+
rot, *_ = R.align_vectors(
|
1842 |
+
np.pad(
|
1843 |
+
matches_previous - matches_previous.mean(axis=0),
|
1844 |
+
pad_width=[0, 1],
|
1845 |
+
mode="constant",
|
1846 |
+
),
|
1847 |
+
np.pad(
|
1848 |
+
matches_current - matches_current.mean(axis=0),
|
1849 |
+
pad_width=[0, 1],
|
1850 |
+
mode="constant",
|
1851 |
+
),
|
1852 |
+
return_sensitivity=True,
|
1853 |
+
)
|
1854 |
+
return rot.as_euler("zyx", degrees=True)[0]
|
1855 |
+
|
1856 |
+
|
1857 |
+
def match_previous_rotation(
|
1858 |
+
previous_image,
|
1859 |
+
previous_mask,
|
1860 |
+
current_image,
|
1861 |
+
current_mask,
|
1862 |
+
plot_debug: dict = {},
|
1863 |
+
):
|
1864 |
+
if plot_debug:
|
1865 |
+
fig = plt.figure(
|
1866 |
+
figsize=plot_debug["fig_size"] if "fig_size" in plot_debug else (8, 8)
|
1867 |
+
)
|
1868 |
+
grid_spec = fig.add_gridspec(nrows=2, ncols=3)
|
1869 |
+
plt_descriptors = fig.add_subplot(grid_spec[0, :])
|
1870 |
+
plot_debug = plot_debug | {
|
1871 |
+
"previous": cv2.bitwise_and(
|
1872 |
+
previous_image, previous_image, mask=previous_mask
|
1873 |
+
),
|
1874 |
+
"current": cv2.bitwise_and(current_image, current_image, mask=current_mask),
|
1875 |
+
"ax": plt_descriptors,
|
1876 |
+
}
|
1877 |
+
|
1878 |
+
angle = find_rotation_anlge(
|
1879 |
+
previous_image=previous_image,
|
1880 |
+
previous_mask=previous_mask,
|
1881 |
+
current_image=current_image,
|
1882 |
+
current_mask=current_mask,
|
1883 |
+
plot_debug=plot_debug,
|
1884 |
+
)
|
1885 |
+
ret = rotate_image(current_image, angle=angle)
|
1886 |
+
if plot_debug:
|
1887 |
+
plt_descriptors.set_title(f"{plot_debug['title']}, angle={angle:.2f} ")
|
1888 |
+
_update_axis(
|
1889 |
+
axis=fig.add_subplot(grid_spec[1, 0]),
|
1890 |
+
image=previous_image,
|
1891 |
+
title="previous image",
|
1892 |
+
)
|
1893 |
+
_update_axis(
|
1894 |
+
axis=fig.add_subplot(grid_spec[1, 1]), image=ret, title="rotated image"
|
1895 |
+
)
|
1896 |
+
_update_axis(
|
1897 |
+
axis=fig.add_subplot(grid_spec[1, 2]),
|
1898 |
+
image=current_image,
|
1899 |
+
title="current image",
|
1900 |
+
)
|
1901 |
+
plt.show()
|
1902 |
+
return ret
|
1903 |
+
|
1904 |
+
|
1905 |
+
def sift_contours(
|
1906 |
+
clean_mask, target_mask, morph_op: Morphologer = Morphologer(op="none")
|
1907 |
+
):
|
1908 |
+
contours = get_contours_dict(morph_op(target_mask))
|
1909 |
+
if "suspect" not in contours:
|
1910 |
+
return target_mask
|
1911 |
+
suspects = contours["suspect"]
|
1912 |
+
goods = []
|
1913 |
+
|
1914 |
+
i = 0
|
1915 |
+
cm = morph_op(clean_mask)
|
1916 |
+
while i < len(suspects):
|
1917 |
+
if cv2.bitwise_and(
|
1918 |
+
cv2.drawContours(np.zeros_like(cm), suspects, i, 255, -1),
|
1919 |
+
cm,
|
1920 |
+
).any():
|
1921 |
+
goods.append(suspects.pop(i))
|
1922 |
+
else:
|
1923 |
+
i += 1
|
1924 |
+
|
1925 |
+
# Finalize
|
1926 |
+
ret = cv2.drawContours(
|
1927 |
+
np.zeros_like(cm),
|
1928 |
+
contours=[contours["main"]] + goods,
|
1929 |
+
contourIdx=-1,
|
1930 |
+
color=255,
|
1931 |
+
thickness=-1,
|
1932 |
+
)
|
1933 |
+
ret = cv2.drawContours(
|
1934 |
+
ret,
|
1935 |
+
contours=contours.get("internal", []),
|
1936 |
+
contourIdx=-1,
|
1937 |
+
color=0,
|
1938 |
+
thickness=-1,
|
1939 |
+
)
|
1940 |
+
return ret
|
1941 |
+
|
1942 |
+
|
1943 |
+
def draw_mask(
|
1944 |
+
image,
|
1945 |
+
mask,
|
1946 |
+
background_type: str = "bw",
|
1947 |
+
draw_contours: bool = True,
|
1948 |
+
mask_properties: list = [],
|
1949 |
+
contours_thickness: int = 4,
|
1950 |
+
):
|
1951 |
+
foreground = cv2.bitwise_and(image, image, mask=mask)
|
1952 |
+
if background_type == "bw":
|
1953 |
+
background = cv2.cvtColor(
|
1954 |
+
cv2.bitwise_and(image, image, mask=255 - mask), cv2.COLOR_RGB2GRAY
|
1955 |
+
)
|
1956 |
+
background = background * 0.4
|
1957 |
+
background[background > 255] = 255
|
1958 |
+
background = cv2.merge([background, background, background]).astype(np.uint8)
|
1959 |
+
elif background_type == "source":
|
1960 |
+
background = image.copy()
|
1961 |
+
elif isinstance(background_type, tuple):
|
1962 |
+
background = np.full_like(image, background_type)
|
1963 |
+
else:
|
1964 |
+
raise NotImplementedError
|
1965 |
+
out = cv2.bitwise_or(foreground, background)
|
1966 |
+
if draw_contours is True or isinstance(draw_contours, tuple):
|
1967 |
+
cur_color = 0
|
1968 |
+
colors = (
|
1969 |
+
[
|
1970 |
+
tc.C_BLUE,
|
1971 |
+
tc.C_BLUE_VIOLET,
|
1972 |
+
tc.C_CABIN_BLUE,
|
1973 |
+
tc.C_CYAN,
|
1974 |
+
tc.C_FUCHSIA,
|
1975 |
+
tc.C_LIGHT_STEEL_BLUE,
|
1976 |
+
tc.C_MAROON,
|
1977 |
+
tc.C_ORANGE,
|
1978 |
+
tc.C_PURPLE,
|
1979 |
+
tc.C_RED,
|
1980 |
+
tc.C_TEAL,
|
1981 |
+
tc.C_YELLOW,
|
1982 |
+
]
|
1983 |
+
if isinstance(draw_contours, bool)
|
1984 |
+
else [draw_contours] if isinstance(draw_contours, tuple) else [tc.C_WHITE]
|
1985 |
+
)
|
1986 |
+
for cnt in cv2.findContours(
|
1987 |
+
mask, mode=cv2.RETR_LIST, method=cv2.CHAIN_APPROX_NONE
|
1988 |
+
)[0]:
|
1989 |
+
out = cv2.drawContours(
|
1990 |
+
out,
|
1991 |
+
[cnt],
|
1992 |
+
contourIdx=0,
|
1993 |
+
color=colors[cur_color],
|
1994 |
+
thickness=contours_thickness,
|
1995 |
+
)
|
1996 |
+
cur_color += 1
|
1997 |
+
if cur_color > len(colors) - 1:
|
1998 |
+
cur_color = 0
|
1999 |
+
if tc.MP_CENTROID in mask_properties:
|
2000 |
+
moments = cv2.moments(mask, binaryImage=True)
|
2001 |
+
cmx, cmy = (
|
2002 |
+
moments["m10"] / moments["m00"],
|
2003 |
+
moments["m01"] / moments["m00"],
|
2004 |
+
)
|
2005 |
+
out = cv2.circle(out, (int(cmx), int(cmy)), 10, tc.C_BLUE, 4)
|
2006 |
+
|
2007 |
+
return out
|
2008 |
+
|
2009 |
+
|
2010 |
+
def draw_marker(
|
2011 |
+
image,
|
2012 |
+
pos: list,
|
2013 |
+
marker_size: int,
|
2014 |
+
thickness: int,
|
2015 |
+
colors: tuple,
|
2016 |
+
marker_type=cv2.MARKER_CROSS,
|
2017 |
+
):
|
2018 |
+
return cv2.drawMarker(
|
2019 |
+
cv2.drawMarker(
|
2020 |
+
image,
|
2021 |
+
pos,
|
2022 |
+
color=colors[0],
|
2023 |
+
markerType=marker_type,
|
2024 |
+
markerSize=marker_size,
|
2025 |
+
thickness=thickness,
|
2026 |
+
),
|
2027 |
+
pos,
|
2028 |
+
color=colors[1],
|
2029 |
+
markerType=marker_type,
|
2030 |
+
markerSize=marker_size // 2,
|
2031 |
+
thickness=thickness // 2,
|
2032 |
+
)
|
2033 |
+
|
2034 |
+
|
2035 |
+
def draw_seeds(image, seeds, selected_label=None, marker_size=None, marker_thickness=4):
|
2036 |
+
marker_size = max(image.shape) // 50 if marker_size is None else marker_size
|
2037 |
+
|
2038 |
+
for seed, label in zip(seeds["input_points"], seeds["input_labels"]):
|
2039 |
+
if selected_label is not None and label != selected_label:
|
2040 |
+
continue
|
2041 |
+
image = draw_marker(
|
2042 |
+
image=image,
|
2043 |
+
pos=seed,
|
2044 |
+
marker_size=marker_size,
|
2045 |
+
thickness=marker_thickness,
|
2046 |
+
colors=(tc.C_WHITE, tc.C_BLUE if label == 0 else tc.C_LIME),
|
2047 |
+
marker_type=cv2.MARKER_TILTED_CROSS if label == 0 else cv2.MARKER_SQUARE,
|
2048 |
+
)
|
2049 |
+
|
2050 |
+
return image
|
2051 |
+
|
2052 |
+
|
2053 |
+
def get_concat_h_multi_resize(im_list, resample=Image.Resampling.BICUBIC):
|
2054 |
+
min_height = min(im.height for im in im_list)
|
2055 |
+
im_list_resize = [
|
2056 |
+
im.resize(
|
2057 |
+
(int(im.width * min_height / im.height), min_height), resample=resample
|
2058 |
+
)
|
2059 |
+
for im in im_list
|
2060 |
+
]
|
2061 |
+
total_width = sum(im.width for im in im_list_resize)
|
2062 |
+
dst = Image.new("RGB", (total_width, min_height))
|
2063 |
+
pos_x = 0
|
2064 |
+
for im in im_list_resize:
|
2065 |
+
dst.paste(im, (pos_x, 0))
|
2066 |
+
pos_x += im.width
|
2067 |
+
return dst
|
2068 |
+
|
2069 |
+
|
2070 |
+
def get_concat_v_multi_resize(im_list, resample=Image.Resampling.BICUBIC):
|
2071 |
+
min_width = min(im.width for im in im_list)
|
2072 |
+
im_list_resize = [
|
2073 |
+
im.resize((min_width, int(im.height * min_width / im.width)), resample=resample)
|
2074 |
+
for im in im_list
|
2075 |
+
]
|
2076 |
+
total_height = sum(im.height for im in im_list_resize)
|
2077 |
+
dst = Image.new("RGB", (min_width, total_height))
|
2078 |
+
pos_y = 0
|
2079 |
+
for im in im_list_resize:
|
2080 |
+
dst.paste(im, (0, pos_y))
|
2081 |
+
pos_y += im.height
|
2082 |
+
return dst
|
2083 |
+
|
2084 |
+
|
2085 |
+
def get_concat_tile_resize(im_list_2d, resample=Image.Resampling.BICUBIC):
|
2086 |
+
im_list_v = [
|
2087 |
+
get_concat_h_multi_resize(im_list_h, resample=resample)
|
2088 |
+
for im_list_h in im_list_2d
|
2089 |
+
]
|
2090 |
+
return get_concat_v_multi_resize(im_list_v, resample=resample)
|
2091 |
+
|
2092 |
+
|
2093 |
+
def get_tiles(img_list, row_count, resample=Image.Resampling.BICUBIC):
|
2094 |
+
if isinstance(img_list, np.ndarray) is False:
|
2095 |
+
img_list = np.asarray(img_list, dtype="object")
|
2096 |
+
return get_concat_tile_resize(np.split(img_list, row_count), resample)
|