File size: 4,906 Bytes
12aae2e
 
 
 
 
 
 
 
 
 
 
 
914ecaf
507db9b
 
64e9db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
References:
    - Diffusion Forcing: https://github.com/buoyancy99/diffusion-forcing
"""
import torch
from dit import DiT_models
from vae import VAE_models
from torchvision.io import read_video, write_video
from utils import one_hot_actions, sigmoid_beta_schedule
from tqdm import tqdm
from einops import rearrange
from torch import autocast
import os
#assert torch.cuda.is_available()
#device = "cuda:0"
def run_mod():
    device = "cpu"
    
    # load DiT checkpoint
    ckpt = torch.load("oasis500m.pt",map_location=torch.device('cpu'))
    model = DiT_models["DiT-S/2"]()
    model.load_state_dict(ckpt, strict=False)
    model = model.to(device).eval()
    
    # load VAE checkpoint
    vae_ckpt = torch.load("vit-l-20.pt",map_location=torch.device('cpu'))
    vae = VAE_models["vit-l-20-shallow-encoder"]()
    vae.load_state_dict(vae_ckpt)
    vae = vae.to(device).eval()
    
    # sampling params
    B = 1
    total_frames = 32
    max_noise_level = 1000
    ddim_noise_steps = 100
    noise_range = torch.linspace(-1, max_noise_level - 1, ddim_noise_steps + 1)
    noise_abs_max = 20
    ctx_max_noise_idx = ddim_noise_steps // 10 * 3
    
    # get input video 
    print(os.getcwd())
    video_id = "snippy-chartreuse-mastiff-f79998db196d-20220401-224517.chunk_001"
    mp4_path = f"{os.getcwd()}/open_oasis_master/sample_data/{video_id}.mp4"
    actions_path = f"{os.getcwd()}/open_oasis_master/sample_data/{video_id}.actions.pt"
    video = read_video(mp4_path, pts_unit="sec")[0].float() / 255
    actions = one_hot_actions(torch.load(actions_path,map_location=torch.device('cpu')))
    offset = 100
    video = video[offset:offset+total_frames].unsqueeze(0)
    actions = actions[offset:offset+total_frames].unsqueeze(0)
    
    # sampling inputs
    n_prompt_frames = 1
    x = video[:, :n_prompt_frames]
    x = x.to(device)
    actions = actions.to(device)
    
    # vae encoding
    scaling_factor = 0.07843137255
    x = rearrange(x, "b t h w c -> (b t) c h w")
    H, W = x.shape[-2:]
    with torch.no_grad():
        x = vae.encode(x * 2 - 1).mean * scaling_factor
    x = rearrange(x, "(b t) (h w) c -> b t c h w", t=n_prompt_frames, h=H//vae.patch_size, w=W//vae.patch_size)
    
    # get alphas
    betas = sigmoid_beta_schedule(max_noise_level).to(device)
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_cumprod = rearrange(alphas_cumprod, "T -> T 1 1 1")
    
    # sampling loop
    for i in tqdm(range(n_prompt_frames, total_frames)):
        chunk = torch.randn((B, 1, *x.shape[-3:]), device=device)
        chunk = torch.clamp(chunk, -noise_abs_max, +noise_abs_max)
        x = torch.cat([x, chunk], dim=1)
        start_frame = max(0, i + 1 - model.max_frames)
    
        for noise_idx in reversed(range(1, ddim_noise_steps + 1)):
            # set up noise values
            ctx_noise_idx = min(noise_idx, ctx_max_noise_idx)
            t_ctx  = torch.full((B, i), noise_range[ctx_noise_idx], dtype=torch.long, device=device)
            t      = torch.full((B, 1), noise_range[noise_idx],     dtype=torch.long, device=device)
            t_next = torch.full((B, 1), noise_range[noise_idx - 1], dtype=torch.long, device=device)
            t_next = torch.where(t_next < 0, t, t_next)
            t = torch.cat([t_ctx, t], dim=1)
            t_next = torch.cat([t_ctx, t_next], dim=1)
    
            # sliding window
            x_curr = x.clone()
            x_curr = x_curr[:, start_frame:]
            t = t[:, start_frame:]
            t_next = t_next[:, start_frame:]
    
            # add some noise to the context
            ctx_noise = torch.randn_like(x_curr[:, :-1])
            ctx_noise = torch.clamp(ctx_noise, -noise_abs_max, +noise_abs_max)
            x_curr[:, :-1] = alphas_cumprod[t[:, :-1]].sqrt() * x_curr[:, :-1] + (1 - alphas_cumprod[t[:, :-1]]).sqrt() * ctx_noise
    
            # get model predictions
            with torch.no_grad():
                with autocast("cpu", dtype=torch.half):
                    v = model(x_curr, t, actions[:, start_frame : i + 1])
    
            x_start = alphas_cumprod[t].sqrt() * x_curr - (1 - alphas_cumprod[t]).sqrt() * v
            x_noise = ((1 / alphas_cumprod[t]).sqrt() * x_curr - x_start) \
                    / (1 / alphas_cumprod[t] - 1).sqrt()
    
            # get frame prediction
            x_pred = alphas_cumprod[t_next].sqrt() * x_start + x_noise * (1 - alphas_cumprod[t_next]).sqrt()
            x[:, -1:] = x_pred[:, -1:]
    
    # vae decoding
    x = rearrange(x, "b t c h w -> (b t) (h w) c")
    with torch.no_grad():
        x = (vae.decode(x / scaling_factor) + 1) / 2
    x = rearrange(x, "(b t) c h w -> b t h w c", t=total_frames)
    
    # save video
    x = torch.clamp(x, 0, 1)
    x = (x * 255).byte()
    write_video("video.mp4", x[0], fps=20)
    print("generation saved to video.mp4.")
    return "video.mp4"