File size: 10,870 Bytes
2599057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Adapted from https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
"""

from __future__ import annotations
from math import pi, log

import torch
from torch.nn import Module, ModuleList
from torch.amp import autocast
from torch import nn, einsum, broadcast_tensors, Tensor

from einops import rearrange, repeat

from typing import Literal

# helper functions

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

# broadcat, as tortoise-tts was using it

def broadcat(tensors, dim = -1):
    broadcasted_tensors = broadcast_tensors(*tensors)
    return torch.cat(broadcasted_tensors, dim = dim)

# rotary embedding helper functions

def rotate_half(x):
    x = rearrange(x, '... (d r) -> ... d r', r = 2)
    x1, x2 = x.unbind(dim = -1)
    x = torch.stack((-x2, x1), dim = -1)
    return rearrange(x, '... d r -> ... (d r)')

@autocast('cuda', enabled = False)
def apply_rotary_emb(freqs, t, start_index = 0, scale = 1., seq_dim = -2):
    dtype = t.dtype

    if t.ndim == 3:
        seq_len = t.shape[seq_dim]
        freqs = freqs[-seq_len:]

    rot_dim = freqs.shape[-1]
    end_index = start_index + rot_dim

    assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'

    # Split t into three parts: left, middle (to be transformed), and right
    t_left = t[..., :start_index]
    t_middle = t[..., start_index:end_index]
    t_right = t[..., end_index:]

    # Apply rotary embeddings without modifying t in place    
    t_transformed = (t_middle * freqs.cos() * scale) + (rotate_half(t_middle) * freqs.sin() * scale)
        
    out = torch.cat((t_left, t_transformed, t_right), dim=-1)

    return out.type(dtype)

# learned rotation helpers

def apply_learned_rotations(rotations, t, start_index = 0, freq_ranges = None):
    if exists(freq_ranges):
        rotations = einsum('..., f -> ... f', rotations, freq_ranges)
        rotations = rearrange(rotations, '... r f -> ... (r f)')

    rotations = repeat(rotations, '... n -> ... (n r)', r = 2)
    return apply_rotary_emb(rotations, t, start_index = start_index)

# classes

class RotaryEmbedding(Module):
    def __init__(
        self,
        dim,
        custom_freqs: Tensor | None = None,
        freqs_for:  Literal['lang', 'pixel', 'constant'] = 'lang',
        theta = 10000,
        max_freq = 10,
        num_freqs = 1,
        learned_freq = False,
        use_xpos = False,
        xpos_scale_base = 512,
        interpolate_factor = 1.,
        theta_rescale_factor = 1.,
        seq_before_head_dim = False,
        cache_if_possible = True,
        cache_max_seq_len = 8192
    ):
        super().__init__()
        # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
        # has some connection to NTK literature
        # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

        theta *= theta_rescale_factor ** (dim / (dim - 2))

        self.freqs_for = freqs_for

        if exists(custom_freqs):
            freqs = custom_freqs
        elif freqs_for == 'lang':
            freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
        elif freqs_for == 'pixel':
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'spacetime':
            time_freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'constant':
            freqs = torch.ones(num_freqs).float()

        if freqs_for == 'spacetime':
            self.time_freqs = nn.Parameter(time_freqs, requires_grad = learned_freq)
        self.freqs = nn.Parameter(freqs, requires_grad = learned_freq)

        self.cache_if_possible = cache_if_possible
        self.cache_max_seq_len = cache_max_seq_len

        self.register_buffer('cached_freqs', torch.zeros(cache_max_seq_len, dim), persistent = False)
        self.register_buffer('cached_freqs_seq_len', torch.tensor(0), persistent = False)

        self.learned_freq = learned_freq

        # dummy for device

        self.register_buffer('dummy', torch.tensor(0), persistent = False)

        # default sequence dimension

        self.seq_before_head_dim = seq_before_head_dim
        self.default_seq_dim = -3 if seq_before_head_dim else -2

        # interpolation factors

        assert interpolate_factor >= 1.
        self.interpolate_factor = interpolate_factor

        # xpos

        self.use_xpos = use_xpos

        if not use_xpos:
            return

        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
        self.scale_base = xpos_scale_base

        self.register_buffer('scale', scale, persistent = False)
        self.register_buffer('cached_scales', torch.zeros(cache_max_seq_len, dim), persistent = False)
        self.register_buffer('cached_scales_seq_len', torch.tensor(0), persistent = False)

        # add apply_rotary_emb as static method

        self.apply_rotary_emb = staticmethod(apply_rotary_emb)

    @property
    def device(self):
        return self.dummy.device

    def get_seq_pos(self, seq_len, device, dtype, offset = 0):
        return (torch.arange(seq_len, device = device, dtype = dtype) + offset) / self.interpolate_factor

    def rotate_queries_or_keys(self, t, freqs, seq_dim = None, offset = 0, scale = None):
        seq_dim = default(seq_dim, self.default_seq_dim)

        assert not self.use_xpos or exists(scale), 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'

        device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]

        seq = self.get_seq_pos(seq_len, device = device, dtype = dtype, offset = offset)

        seq_freqs = self.forward(seq, freqs, seq_len = seq_len, offset = offset)

        if seq_dim == -3:
            seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')

        return apply_rotary_emb(seq_freqs, t, scale = default(scale, 1.), seq_dim = seq_dim)

    def rotate_queries_with_cached_keys(self, q, k, seq_dim = None, offset = 0):
        dtype, device, seq_dim = q.dtype, q.device, default(seq_dim, self.default_seq_dim)

        q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
        assert q_len <= k_len

        q_scale = k_scale = 1.

        if self.use_xpos:
            seq = self.get_seq_pos(k_len, dtype = dtype, device = device)

            q_scale = self.get_scale(seq[-q_len:]).type(dtype)
            k_scale = self.get_scale(seq).type(dtype)

        rotated_q = self.rotate_queries_or_keys(q, seq_dim = seq_dim, scale = q_scale, offset = k_len - q_len + offset)
        rotated_k = self.rotate_queries_or_keys(k, seq_dim = seq_dim, scale = k_scale ** -1)

        rotated_q = rotated_q.type(q.dtype)
        rotated_k = rotated_k.type(k.dtype)

        return rotated_q, rotated_k

    def rotate_queries_and_keys(self, q, k, freqs, seq_dim = None):
        seq_dim = default(seq_dim, self.default_seq_dim)

        assert self.use_xpos
        device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]

        seq = self.get_seq_pos(seq_len, dtype = dtype, device = device)

        seq_freqs = self.forward(seq, freqs, seq_len = seq_len)
        scale = self.get_scale(seq, seq_len = seq_len).to(dtype)

        if seq_dim == -3:
            seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')
            scale = rearrange(scale, 'n d -> n 1 d')

        rotated_q = apply_rotary_emb(seq_freqs, q, scale = scale, seq_dim = seq_dim)
        rotated_k = apply_rotary_emb(seq_freqs, k, scale = scale ** -1, seq_dim = seq_dim)

        rotated_q = rotated_q.type(q.dtype)
        rotated_k = rotated_k.type(k.dtype)

        return rotated_q, rotated_k

    def get_scale(
        self,
        t: Tensor,
        seq_len: int | None = None,
        offset = 0
    ):
        assert self.use_xpos

        should_cache = (
            self.cache_if_possible and
            exists(seq_len) and
            (offset + seq_len) <= self.cache_max_seq_len
        )

        if (
            should_cache and \
            exists(self.cached_scales) and \
            (seq_len + offset) <= self.cached_scales_seq_len.item()
        ):
            return self.cached_scales[offset:(offset + seq_len)]

        scale = 1.
        if self.use_xpos:
            power = (t - len(t) // 2) / self.scale_base
            scale = self.scale ** rearrange(power, 'n -> n 1')
            scale = repeat(scale, 'n d -> n (d r)', r = 2)

        if should_cache and offset == 0:
            self.cached_scales[:seq_len] = scale.detach()
            self.cached_scales_seq_len.copy_(seq_len)

        return scale

    def get_axial_freqs(self, *dims):
        Colon = slice(None)
        all_freqs = []

        for ind, dim in enumerate(dims):
            # only allow pixel freqs for last two dimensions
            use_pixel = (self.freqs_for == 'pixel' or self.freqs_for == 'spacetime') and ind >= len(dims) - 2
            if use_pixel:
                pos = torch.linspace(-1, 1, steps = dim, device = self.device)
            else:
                pos = torch.arange(dim, device = self.device)

            if self.freqs_for == 'spacetime' and not use_pixel:
                seq_freqs = self.forward(pos, self.time_freqs, seq_len = dim)
            else:
                seq_freqs = self.forward(pos, self.freqs, seq_len = dim)

            all_axis = [None] * len(dims)
            all_axis[ind] = Colon

            new_axis_slice = (Ellipsis, *all_axis, Colon)
            all_freqs.append(seq_freqs[new_axis_slice])

        all_freqs = broadcast_tensors(*all_freqs)
        return torch.cat(all_freqs, dim = -1)

    @autocast('cuda', enabled = False)
    def forward(
        self,
        t: Tensor,
        freqs: Tensor,
        seq_len = None,
        offset = 0
    ):
        should_cache = (
            self.cache_if_possible and
            not self.learned_freq and
            exists(seq_len) and
            self.freqs_for != 'pixel' and
            (offset + seq_len) <= self.cache_max_seq_len
        )

        if (
            should_cache and \
            exists(self.cached_freqs) and \
            (offset + seq_len) <= self.cached_freqs_seq_len.item()
        ):
            return self.cached_freqs[offset:(offset + seq_len)].detach()

        freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
        freqs = repeat(freqs, '... n -> ... (n r)', r = 2)

        if should_cache and offset == 0:
            self.cached_freqs[:seq_len] = freqs.detach()
            self.cached_freqs_seq_len.copy_(seq_len)

        return freqs