Spaces:
Runtime error
Runtime error
File size: 10,870 Bytes
2599057 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
"""
Adapted from https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
"""
from __future__ import annotations
from math import pi, log
import torch
from torch.nn import Module, ModuleList
from torch.amp import autocast
from torch import nn, einsum, broadcast_tensors, Tensor
from einops import rearrange, repeat
from typing import Literal
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# broadcat, as tortoise-tts was using it
def broadcat(tensors, dim = -1):
broadcasted_tensors = broadcast_tensors(*tensors)
return torch.cat(broadcasted_tensors, dim = dim)
# rotary embedding helper functions
def rotate_half(x):
x = rearrange(x, '... (d r) -> ... d r', r = 2)
x1, x2 = x.unbind(dim = -1)
x = torch.stack((-x2, x1), dim = -1)
return rearrange(x, '... d r -> ... (d r)')
@autocast('cuda', enabled = False)
def apply_rotary_emb(freqs, t, start_index = 0, scale = 1., seq_dim = -2):
dtype = t.dtype
if t.ndim == 3:
seq_len = t.shape[seq_dim]
freqs = freqs[-seq_len:]
rot_dim = freqs.shape[-1]
end_index = start_index + rot_dim
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
# Split t into three parts: left, middle (to be transformed), and right
t_left = t[..., :start_index]
t_middle = t[..., start_index:end_index]
t_right = t[..., end_index:]
# Apply rotary embeddings without modifying t in place
t_transformed = (t_middle * freqs.cos() * scale) + (rotate_half(t_middle) * freqs.sin() * scale)
out = torch.cat((t_left, t_transformed, t_right), dim=-1)
return out.type(dtype)
# learned rotation helpers
def apply_learned_rotations(rotations, t, start_index = 0, freq_ranges = None):
if exists(freq_ranges):
rotations = einsum('..., f -> ... f', rotations, freq_ranges)
rotations = rearrange(rotations, '... r f -> ... (r f)')
rotations = repeat(rotations, '... n -> ... (n r)', r = 2)
return apply_rotary_emb(rotations, t, start_index = start_index)
# classes
class RotaryEmbedding(Module):
def __init__(
self,
dim,
custom_freqs: Tensor | None = None,
freqs_for: Literal['lang', 'pixel', 'constant'] = 'lang',
theta = 10000,
max_freq = 10,
num_freqs = 1,
learned_freq = False,
use_xpos = False,
xpos_scale_base = 512,
interpolate_factor = 1.,
theta_rescale_factor = 1.,
seq_before_head_dim = False,
cache_if_possible = True,
cache_max_seq_len = 8192
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
theta *= theta_rescale_factor ** (dim / (dim - 2))
self.freqs_for = freqs_for
if exists(custom_freqs):
freqs = custom_freqs
elif freqs_for == 'lang':
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
elif freqs_for == 'pixel':
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
elif freqs_for == 'spacetime':
time_freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
elif freqs_for == 'constant':
freqs = torch.ones(num_freqs).float()
if freqs_for == 'spacetime':
self.time_freqs = nn.Parameter(time_freqs, requires_grad = learned_freq)
self.freqs = nn.Parameter(freqs, requires_grad = learned_freq)
self.cache_if_possible = cache_if_possible
self.cache_max_seq_len = cache_max_seq_len
self.register_buffer('cached_freqs', torch.zeros(cache_max_seq_len, dim), persistent = False)
self.register_buffer('cached_freqs_seq_len', torch.tensor(0), persistent = False)
self.learned_freq = learned_freq
# dummy for device
self.register_buffer('dummy', torch.tensor(0), persistent = False)
# default sequence dimension
self.seq_before_head_dim = seq_before_head_dim
self.default_seq_dim = -3 if seq_before_head_dim else -2
# interpolation factors
assert interpolate_factor >= 1.
self.interpolate_factor = interpolate_factor
# xpos
self.use_xpos = use_xpos
if not use_xpos:
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = xpos_scale_base
self.register_buffer('scale', scale, persistent = False)
self.register_buffer('cached_scales', torch.zeros(cache_max_seq_len, dim), persistent = False)
self.register_buffer('cached_scales_seq_len', torch.tensor(0), persistent = False)
# add apply_rotary_emb as static method
self.apply_rotary_emb = staticmethod(apply_rotary_emb)
@property
def device(self):
return self.dummy.device
def get_seq_pos(self, seq_len, device, dtype, offset = 0):
return (torch.arange(seq_len, device = device, dtype = dtype) + offset) / self.interpolate_factor
def rotate_queries_or_keys(self, t, freqs, seq_dim = None, offset = 0, scale = None):
seq_dim = default(seq_dim, self.default_seq_dim)
assert not self.use_xpos or exists(scale), 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]
seq = self.get_seq_pos(seq_len, device = device, dtype = dtype, offset = offset)
seq_freqs = self.forward(seq, freqs, seq_len = seq_len, offset = offset)
if seq_dim == -3:
seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')
return apply_rotary_emb(seq_freqs, t, scale = default(scale, 1.), seq_dim = seq_dim)
def rotate_queries_with_cached_keys(self, q, k, seq_dim = None, offset = 0):
dtype, device, seq_dim = q.dtype, q.device, default(seq_dim, self.default_seq_dim)
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
assert q_len <= k_len
q_scale = k_scale = 1.
if self.use_xpos:
seq = self.get_seq_pos(k_len, dtype = dtype, device = device)
q_scale = self.get_scale(seq[-q_len:]).type(dtype)
k_scale = self.get_scale(seq).type(dtype)
rotated_q = self.rotate_queries_or_keys(q, seq_dim = seq_dim, scale = q_scale, offset = k_len - q_len + offset)
rotated_k = self.rotate_queries_or_keys(k, seq_dim = seq_dim, scale = k_scale ** -1)
rotated_q = rotated_q.type(q.dtype)
rotated_k = rotated_k.type(k.dtype)
return rotated_q, rotated_k
def rotate_queries_and_keys(self, q, k, freqs, seq_dim = None):
seq_dim = default(seq_dim, self.default_seq_dim)
assert self.use_xpos
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]
seq = self.get_seq_pos(seq_len, dtype = dtype, device = device)
seq_freqs = self.forward(seq, freqs, seq_len = seq_len)
scale = self.get_scale(seq, seq_len = seq_len).to(dtype)
if seq_dim == -3:
seq_freqs = rearrange(seq_freqs, 'n d -> n 1 d')
scale = rearrange(scale, 'n d -> n 1 d')
rotated_q = apply_rotary_emb(seq_freqs, q, scale = scale, seq_dim = seq_dim)
rotated_k = apply_rotary_emb(seq_freqs, k, scale = scale ** -1, seq_dim = seq_dim)
rotated_q = rotated_q.type(q.dtype)
rotated_k = rotated_k.type(k.dtype)
return rotated_q, rotated_k
def get_scale(
self,
t: Tensor,
seq_len: int | None = None,
offset = 0
):
assert self.use_xpos
should_cache = (
self.cache_if_possible and
exists(seq_len) and
(offset + seq_len) <= self.cache_max_seq_len
)
if (
should_cache and \
exists(self.cached_scales) and \
(seq_len + offset) <= self.cached_scales_seq_len.item()
):
return self.cached_scales[offset:(offset + seq_len)]
scale = 1.
if self.use_xpos:
power = (t - len(t) // 2) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = repeat(scale, 'n d -> n (d r)', r = 2)
if should_cache and offset == 0:
self.cached_scales[:seq_len] = scale.detach()
self.cached_scales_seq_len.copy_(seq_len)
return scale
def get_axial_freqs(self, *dims):
Colon = slice(None)
all_freqs = []
for ind, dim in enumerate(dims):
# only allow pixel freqs for last two dimensions
use_pixel = (self.freqs_for == 'pixel' or self.freqs_for == 'spacetime') and ind >= len(dims) - 2
if use_pixel:
pos = torch.linspace(-1, 1, steps = dim, device = self.device)
else:
pos = torch.arange(dim, device = self.device)
if self.freqs_for == 'spacetime' and not use_pixel:
seq_freqs = self.forward(pos, self.time_freqs, seq_len = dim)
else:
seq_freqs = self.forward(pos, self.freqs, seq_len = dim)
all_axis = [None] * len(dims)
all_axis[ind] = Colon
new_axis_slice = (Ellipsis, *all_axis, Colon)
all_freqs.append(seq_freqs[new_axis_slice])
all_freqs = broadcast_tensors(*all_freqs)
return torch.cat(all_freqs, dim = -1)
@autocast('cuda', enabled = False)
def forward(
self,
t: Tensor,
freqs: Tensor,
seq_len = None,
offset = 0
):
should_cache = (
self.cache_if_possible and
not self.learned_freq and
exists(seq_len) and
self.freqs_for != 'pixel' and
(offset + seq_len) <= self.cache_max_seq_len
)
if (
should_cache and \
exists(self.cached_freqs) and \
(offset + seq_len) <= self.cached_freqs_seq_len.item()
):
return self.cached_freqs[offset:(offset + seq_len)].detach()
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
if should_cache and offset == 0:
self.cached_freqs[:seq_len] = freqs.detach()
self.cached_freqs_seq_len.copy_(seq_len)
return freqs
|