Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,8 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
16 |
if HF_TOKEN is None:
|
17 |
print("Warning: HF_TOKEN is not set!")
|
18 |
|
|
|
|
|
19 |
DESCRIPTION = "# Mistral-7B v0.2"
|
20 |
|
21 |
if not torch.cuda.is_available():
|
@@ -104,6 +106,12 @@ def generate(
|
|
104 |
raise e # Re-raise the error after logging it
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
chat_interface = gr.ChatInterface(
|
108 |
fn=generate,
|
109 |
additional_inputs=[
|
@@ -158,12 +166,27 @@ print("Setting up interface...")
|
|
158 |
|
159 |
with gr.Blocks(css="style.css") as demo:
|
160 |
gr.Markdown(DESCRIPTION)
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
# Debugging: Starting queue and launching the demo
|
169 |
print("Launching demo...")
|
@@ -173,7 +196,8 @@ if __name__ == "__main__":
|
|
173 |
|
174 |
|
175 |
|
176 |
-
|
|
|
177 |
|
178 |
# import os
|
179 |
# from threading import Thread
|
@@ -184,21 +208,39 @@ if __name__ == "__main__":
|
|
184 |
# import torch
|
185 |
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
186 |
|
|
|
|
|
|
|
187 |
# HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
188 |
|
189 |
# DESCRIPTION = "# Mistral-7B v0.2"
|
190 |
|
191 |
# if not torch.cuda.is_available():
|
192 |
# DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
|
|
|
|
|
|
193 |
|
194 |
# MAX_MAX_NEW_TOKENS = 2048
|
195 |
# DEFAULT_MAX_NEW_TOKENS = 1024
|
196 |
# MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
197 |
|
|
|
198 |
# if torch.cuda.is_available():
|
199 |
# model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
200 |
-
#
|
201 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
|
204 |
# @spaces.GPU
|
@@ -211,36 +253,54 @@ if __name__ == "__main__":
|
|
211 |
# top_k: int = 50,
|
212 |
# repetition_penalty: float = 1.2,
|
213 |
# ) -> Iterator[str]:
|
|
|
|
|
|
|
214 |
# conversation = []
|
215 |
# for user, assistant in chat_history:
|
216 |
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
217 |
# conversation.append({"role": "user", "content": message})
|
218 |
|
219 |
-
#
|
220 |
-
#
|
221 |
-
# input_ids =
|
222 |
-
#
|
223 |
-
|
224 |
-
|
225 |
-
#
|
226 |
-
#
|
227 |
-
#
|
228 |
-
|
229 |
-
#
|
230 |
-
#
|
231 |
-
|
232 |
-
#
|
233 |
-
#
|
234 |
-
#
|
235 |
-
#
|
236 |
-
#
|
237 |
-
#
|
238 |
-
#
|
239 |
-
|
240 |
-
#
|
241 |
-
#
|
242 |
-
#
|
243 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
|
246 |
# chat_interface = gr.ChatInterface(
|
@@ -292,6 +352,9 @@ if __name__ == "__main__":
|
|
292 |
# ],
|
293 |
# )
|
294 |
|
|
|
|
|
|
|
295 |
# with gr.Blocks(css="style.css") as demo:
|
296 |
# gr.Markdown(DESCRIPTION)
|
297 |
# gr.DuplicateButton(
|
@@ -301,126 +364,8 @@ if __name__ == "__main__":
|
|
301 |
# )
|
302 |
# chat_interface.render()
|
303 |
|
304 |
-
#
|
305 |
-
#
|
306 |
-
|
307 |
-
# gr.ChatInterface(
|
308 |
-
# fn=generate,
|
309 |
-
# additional_inputs=[
|
310 |
-
# gr.Slider(
|
311 |
-
# label="Max new tokens",
|
312 |
-
# minimum=1,
|
313 |
-
# maximum=MAX_MAX_NEW_TOKENS,
|
314 |
-
# step=1,
|
315 |
-
# value=DEFAULT_MAX_NEW_TOKENS,
|
316 |
-
# ),
|
317 |
-
# gr.Slider(
|
318 |
-
# label="Temperature",
|
319 |
-
# minimum=0.1,
|
320 |
-
# maximum=4.0,
|
321 |
-
# step=0.1,
|
322 |
-
# value=0.6,
|
323 |
-
# ),
|
324 |
-
# gr.Slider(
|
325 |
-
# label="Top-p (nucleus sampling)",
|
326 |
-
# minimum=0.05,
|
327 |
-
# maximum=1.0,
|
328 |
-
# step=0.05,
|
329 |
-
# value=0.9,
|
330 |
-
# ),
|
331 |
-
# gr.Slider(
|
332 |
-
# label="Top-k",
|
333 |
-
# minimum=1,
|
334 |
-
# maximum=1000,
|
335 |
-
# step=1,
|
336 |
-
# value=50,
|
337 |
-
# ),
|
338 |
-
# gr.Slider(
|
339 |
-
# label="Repetition penalty",
|
340 |
-
# minimum=1.0,
|
341 |
-
# maximum=2.0,
|
342 |
-
# step=0.05,
|
343 |
-
# value=1.2,
|
344 |
-
# ),
|
345 |
-
# ],
|
346 |
-
# stop_btn=None,
|
347 |
-
# examples=[
|
348 |
-
# ["Hello there! How are you doing?"],
|
349 |
-
# ["Can you explain briefly to me what is the Python programming language?"],
|
350 |
-
# ["Explain the plot of Cinderella in a sentence."],
|
351 |
-
# ["How many hours does it take a man to eat a Helicopter?"],
|
352 |
-
# ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
353 |
-
# ],
|
354 |
-
# ).launch(share=True)
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
# import gradio as gr
|
361 |
-
# import spaces
|
362 |
-
# from huggingface_hub import InferenceClient
|
363 |
-
# import gradio as gr
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
# """
|
368 |
-
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
369 |
-
# """
|
370 |
-
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
371 |
-
|
372 |
-
# @spaces.GPU()
|
373 |
-
# def respond(
|
374 |
-
# message,
|
375 |
-
# history: list[tuple[str, str]],
|
376 |
-
# system_message,
|
377 |
-
# max_tokens,
|
378 |
-
# temperature,
|
379 |
-
# top_p,
|
380 |
-
# ):
|
381 |
-
# messages = [{"role": "system", "content": system_message}]
|
382 |
-
|
383 |
-
# for val in history:
|
384 |
-
# if val[0]:
|
385 |
-
# messages.append({"role": "user", "content": val[0]})
|
386 |
-
# if val[1]:
|
387 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
388 |
-
|
389 |
-
# messages.append({"role": "user", "content": message})
|
390 |
-
|
391 |
-
# response = ""
|
392 |
-
|
393 |
-
# for message in client.chat_completion(
|
394 |
-
# messages,
|
395 |
-
# max_tokens=max_tokens,
|
396 |
-
# stream=True,
|
397 |
-
# temperature=temperature,
|
398 |
-
# top_p=top_p,
|
399 |
-
# ):
|
400 |
-
# token = message.choices[0].delta.content
|
401 |
-
|
402 |
-
# response += token
|
403 |
-
# yield response
|
404 |
-
|
405 |
-
# """
|
406 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
407 |
-
# """
|
408 |
-
# demo = gr.ChatInterface(
|
409 |
-
# respond,
|
410 |
-
# additional_inputs=[
|
411 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
412 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
413 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
414 |
-
# gr.Slider(
|
415 |
-
# minimum=0.1,
|
416 |
-
# maximum=1.0,
|
417 |
-
# value=0.95,
|
418 |
-
# step=0.05,
|
419 |
-
# label="Top-p (nucleus sampling)",
|
420 |
-
# ),
|
421 |
-
# ],
|
422 |
-
# )
|
423 |
-
|
424 |
|
425 |
# if __name__ == "__main__":
|
426 |
-
# demo.launch()
|
|
|
16 |
if HF_TOKEN is None:
|
17 |
print("Warning: HF_TOKEN is not set!")
|
18 |
|
19 |
+
PASSWORD = os.getenv("APP_PASSWORD", "mysecretpassword") # Set your desired password here or via environment variable
|
20 |
+
|
21 |
DESCRIPTION = "# Mistral-7B v0.2"
|
22 |
|
23 |
if not torch.cuda.is_available():
|
|
|
106 |
raise e # Re-raise the error after logging it
|
107 |
|
108 |
|
109 |
+
def password_auth(password):
|
110 |
+
if password == PASSWORD:
|
111 |
+
return gr.update(visible=True), gr.update(visible=False)
|
112 |
+
else:
|
113 |
+
return gr.update(visible=False), gr.update(visible=True, value="Incorrect password. Try again.")
|
114 |
+
|
115 |
chat_interface = gr.ChatInterface(
|
116 |
fn=generate,
|
117 |
additional_inputs=[
|
|
|
166 |
|
167 |
with gr.Blocks(css="style.css") as demo:
|
168 |
gr.Markdown(DESCRIPTION)
|
169 |
+
|
170 |
+
# Create login components
|
171 |
+
with gr.Row(visible=True) as login_area:
|
172 |
+
password_input = gr.Textbox(
|
173 |
+
label="Enter Password", type="password", placeholder="Password", show_label=True
|
174 |
+
)
|
175 |
+
login_btn = gr.Button("Submit")
|
176 |
+
incorrect_password_msg = gr.Markdown("Incorrect password. Try again.", visible=False)
|
177 |
+
|
178 |
+
# Main chat interface
|
179 |
+
with gr.Column(visible=False) as chat_area:
|
180 |
+
gr.Markdown(DESCRIPTION)
|
181 |
+
gr.DuplicateButton(
|
182 |
+
value="Duplicate Space for private use",
|
183 |
+
elem_id="duplicate-button",
|
184 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
185 |
+
)
|
186 |
+
chat_interface.render()
|
187 |
+
|
188 |
+
# Bind login button to check password
|
189 |
+
login_btn.click(password_auth, inputs=password_input, outputs=[chat_area, incorrect_password_msg])
|
190 |
|
191 |
# Debugging: Starting queue and launching the demo
|
192 |
print("Launching demo...")
|
|
|
196 |
|
197 |
|
198 |
|
199 |
+
# WORKING
|
200 |
+
# #!/usr/bin/env python
|
201 |
|
202 |
# import os
|
203 |
# from threading import Thread
|
|
|
208 |
# import torch
|
209 |
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
210 |
|
211 |
+
# # Debugging: Start script
|
212 |
+
# print("Starting script...")
|
213 |
+
|
214 |
# HF_TOKEN = os.environ.get("HF_TOKEN")
|
215 |
+
# if HF_TOKEN is None:
|
216 |
+
# print("Warning: HF_TOKEN is not set!")
|
217 |
|
218 |
# DESCRIPTION = "# Mistral-7B v0.2"
|
219 |
|
220 |
# if not torch.cuda.is_available():
|
221 |
# DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
222 |
+
# print("Warning: No GPU available. This model cannot run on CPU.")
|
223 |
+
# else:
|
224 |
+
# print("GPU is available!")
|
225 |
|
226 |
# MAX_MAX_NEW_TOKENS = 2048
|
227 |
# DEFAULT_MAX_NEW_TOKENS = 1024
|
228 |
# MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
229 |
|
230 |
+
# # Debugging: GPU check passed, loading model
|
231 |
# if torch.cuda.is_available():
|
232 |
# model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
233 |
+
# try:
|
234 |
+
# print("Loading model...")
|
235 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
|
236 |
+
# print("Model loaded successfully!")
|
237 |
+
|
238 |
+
# print("Loading tokenizer...")
|
239 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
240 |
+
# print("Tokenizer loaded successfully!")
|
241 |
+
# except Exception as e:
|
242 |
+
# print(f"Error loading model or tokenizer: {e}")
|
243 |
+
# raise e # Re-raise the error after logging it
|
244 |
|
245 |
|
246 |
# @spaces.GPU
|
|
|
253 |
# top_k: int = 50,
|
254 |
# repetition_penalty: float = 1.2,
|
255 |
# ) -> Iterator[str]:
|
256 |
+
# print(f"Received message: {message}")
|
257 |
+
# print(f"Chat history: {chat_history}")
|
258 |
+
|
259 |
# conversation = []
|
260 |
# for user, assistant in chat_history:
|
261 |
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
262 |
# conversation.append({"role": "user", "content": message})
|
263 |
|
264 |
+
# try:
|
265 |
+
# print("Tokenizing input...")
|
266 |
+
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
267 |
+
# print(f"Input tokenized: {input_ids.shape}")
|
268 |
+
|
269 |
+
# if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
270 |
+
# input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
271 |
+
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
272 |
+
# print("Trimmed input tokens due to length.")
|
273 |
+
|
274 |
+
# input_ids = input_ids.to(model.device)
|
275 |
+
# print("Input moved to the model's device.")
|
276 |
+
|
277 |
+
# streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
278 |
+
# generate_kwargs = dict(
|
279 |
+
# {"input_ids": input_ids},
|
280 |
+
# streamer=streamer,
|
281 |
+
# max_new_tokens=max_new_tokens,
|
282 |
+
# do_sample=True,
|
283 |
+
# top_p=top_p,
|
284 |
+
# top_k=top_k,
|
285 |
+
# temperature=temperature,
|
286 |
+
# num_beams=1,
|
287 |
+
# repetition_penalty=repetition_penalty,
|
288 |
+
# )
|
289 |
+
|
290 |
+
# print("Starting generation...")
|
291 |
+
# t = Thread(target=model.generate, kwargs=generate_kwargs)
|
292 |
+
# t.start()
|
293 |
+
# print("Thread started for model generation.")
|
294 |
+
|
295 |
+
# outputs = []
|
296 |
+
# for text in streamer:
|
297 |
+
# outputs.append(text)
|
298 |
+
# print(f"Generated text so far: {''.join(outputs)}")
|
299 |
+
# yield "".join(outputs)
|
300 |
+
|
301 |
+
# except Exception as e:
|
302 |
+
# print(f"Error during generation: {e}")
|
303 |
+
# raise e # Re-raise the error after logging it
|
304 |
|
305 |
|
306 |
# chat_interface = gr.ChatInterface(
|
|
|
352 |
# ],
|
353 |
# )
|
354 |
|
355 |
+
# # Debugging: Interface setup
|
356 |
+
# print("Setting up interface...")
|
357 |
+
|
358 |
# with gr.Blocks(css="style.css") as demo:
|
359 |
# gr.Markdown(DESCRIPTION)
|
360 |
# gr.DuplicateButton(
|
|
|
364 |
# )
|
365 |
# chat_interface.render()
|
366 |
|
367 |
+
# # Debugging: Starting queue and launching the demo
|
368 |
+
# print("Launching demo...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
# if __name__ == "__main__":
|
371 |
+
# demo.queue(max_size=20).launch(share=True)
|