keysync-demo / inference_functions.py
Antoni Bigata
first commit
b5ce381
import torch
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from einops import rearrange, repeat
import math
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def merge_overlapping_segments(segments: torch.Tensor, overlap: int) -> torch.Tensor:
"""
Merges overlapping segments by averaging overlapping frames.
Segments have shape (b, t, ...), where 'b' is the number of segments,
't' is frames per segment, and '...' are other dimensions.
Args:
segments: Tensor of shape (b, t, ...)
overlap: Integer, number of frames that overlap between consecutive segments
Returns:
Tensor of the merged video
"""
# Get the shape details
b, t, *other_dims = segments.shape
num_frames = (b - 1) * (
t - overlap
) + t # Calculate the total number of frames in the merged video
# Initialize the output tensor and a count tensor to keep track of contributions for averaging
output_shape = [num_frames] + other_dims
output = torch.zeros(output_shape, dtype=segments.dtype, device=segments.device)
count = torch.zeros(output_shape, dtype=torch.float32, device=segments.device)
current_index = 0
for i in range(b):
end_index = current_index + t
# Add the segment to the output tensor
output[current_index:end_index] += rearrange(segments[i], "... -> ...")
# Increment the count tensor for each frame that's added
count[current_index:end_index] += 1
# Update the starting index for the next segment
current_index += t - overlap
# Avoid division by zero
count[count == 0] = 1
# Average the frames where there's overlap
output /= count
return output
def get_batch_overlap(
keys: List[str],
value_dict: Dict[str, Any],
N: Tuple[int, ...],
T: Optional[int],
device: str,
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
Create a batch dictionary with overlapping frames for model input.
Args:
keys: List of keys to include in the batch
value_dict: Dictionary containing values for each key
N: Batch dimensions
T: Number of frames (optional)
device: Device to place tensors on
Returns:
Tuple of (batch dictionary, unconditional batch dictionary)
"""
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "b ... -> (b t) ...", t=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "b ... -> (b t) ...", t=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
@torch.inference_mode()
def sample_keyframes(
model_keyframes: Any,
audio_list: torch.Tensor,
gt_list: torch.Tensor,
masks_list: torch.Tensor,
condition: torch.Tensor,
num_frames: int,
fps_id: int,
cond_aug: float,
device: str,
embbedings: Optional[torch.Tensor],
force_uc_zero_embeddings: List[str],
n_batch_keyframes: int,
added_frames: int,
strength: float,
scale: Optional[Union[float, List[float]]],
gt_as_cond: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Sample keyframes using the keyframe generation model.
Args:
model_keyframes: The keyframe generation model
audio_list: List of audio embeddings
gt_list: List of ground truth frames
masks_list: List of masks
condition: Conditioning tensor
num_frames: Number of frames to generate
fps_id: FPS ID
cond_aug: Conditioning augmentation factor
device: Device to use for computation
embbedings: Optional embeddings
force_uc_zero_embeddings: List of embeddings to force to zero in unconditional case
n_batch_keyframes: Batch size for keyframe generation
added_frames: Number of additional frames
strength: Strength parameter for sampling
scale: Scale parameter for guidance
gt_as_cond: Whether to use ground truth as conditioning
Returns:
Tuple of (latent samples, decoded samples)
"""
if scale is not None:
model_keyframes.sampler.guider.set_scale(scale)
# samples_list = []
samples_z_list = []
# samples_x_list = []
for i in range(audio_list.shape[0]):
H, W = condition.shape[-2:]
assert condition.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
audio_cond = audio_list[i].unsqueeze(0)
value_dict: Dict[str, Any] = {}
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = condition
if embbedings is not None:
value_dict["cond_frames"] = embbedings + cond_aug * torch.randn_like(
embbedings
)
else:
value_dict["cond_frames"] = condition + cond_aug * torch.randn_like(
condition
)
gt = rearrange(gt_list[i].unsqueeze(0), "b t c h w -> b c t h w").to(device)
if gt_as_cond:
value_dict["cond_frames"] = gt[:, :, 0]
value_dict["cond_aug"] = cond_aug
value_dict["audio_emb"] = audio_cond
value_dict["gt"] = gt
value_dict["masks"] = masks_list[i].unsqueeze(0).transpose(1, 2).to(device)
with torch.no_grad():
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model_keyframes.conditioner),
value_dict,
[1, 1],
T=num_frames,
device=device,
)
c, uc = model_keyframes.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=force_uc_zero_embeddings,
)
for k in ["crossattn"]:
if c[k].shape[1] != num_frames:
uc[k] = repeat(
uc[k],
"b ... -> b t ...",
t=num_frames,
)
uc[k] = rearrange(
uc[k],
"b t ... -> (b t) ...",
t=num_frames,
)
c[k] = repeat(
c[k],
"b ... -> b t ...",
t=num_frames,
)
c[k] = rearrange(
c[k],
"b t ... -> (b t) ...",
t=num_frames,
)
video = torch.randn(shape, device=device)
additional_model_inputs: Dict[str, torch.Tensor] = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
n_batch_keyframes, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(
input: torch.Tensor, sigma: torch.Tensor, c: Dict[str, torch.Tensor]
) -> torch.Tensor:
return model_keyframes.denoiser(
model_keyframes.model,
input,
sigma,
c,
**additional_model_inputs,
)
samples_z = model_keyframes.sampler(
denoiser, video, cond=c, uc=uc, strength=strength
)
samples_z_list.append(samples_z)
# samples_x_list.append(samples_x)
# samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
# samples_list.append(samples)
video = None
# samples = (
# torch.concat(samples_list)[:-added_frames]
# if added_frames > 0
# else torch.concat(samples_list)
# )
samples_z = (
torch.concat(samples_z_list)[:-added_frames]
if added_frames > 0
else torch.concat(samples_z_list)
)
# samples_x = (
# torch.concat(samples_x_list)[:-added_frames]
# if added_frames > 0
# else torch.concat(samples_x_list)
# )
return samples_z
@torch.inference_mode()
def sample_interpolation(
model: Any,
samples_z: torch.Tensor,
# samples_x: torch.Tensor,
audio_interpolation_list: List[torch.Tensor],
gt_chunks: List[torch.Tensor],
masks_chunks: List[torch.Tensor],
condition: torch.Tensor,
num_frames: int,
device: str,
overlap: int,
fps_id: int,
cond_aug: float,
force_uc_zero_embeddings: List[str],
n_batch: int,
chunk_size: Optional[int],
strength: float,
scale: Optional[float] = None,
cut_audio: bool = False,
to_remove: List[bool] = [],
) -> np.ndarray:
"""
Sample interpolation frames between keyframes.
Args:
model: The interpolation model
samples_z: Latent samples from keyframe generation
samples_x: Decoded samples from keyframe generation
audio_interpolation_list: List of audio embeddings for interpolation
gt_chunks: Ground truth video chunks
masks_chunks: Mask chunks for conditional generation
condition: Visual conditioning
num_frames: Number of frames to generate
device: Device to run inference on
overlap: Number of frames to overlap between segments
fps_id: FPS ID for conditioning
motion_bucket_id: Motion bucket ID for conditioning
cond_aug: Conditioning augmentation strength
force_uc_zero_embeddings: Keys to zero out in unconditional embeddings
n_batch: Batch size for generation
chunk_size: Size of chunks for processing (to manage memory)
strength: Strength of the conditioning
scale: Optional scale for classifier-free guidance
cut_audio: Whether to cut audio embeddings
to_remove: List of flags indicating which frames to remove
Returns:
Generated video frames as numpy array
"""
if scale is not None:
model.sampler.guider.set_scale(scale)
# Creating condition for interpolation model. We need to create a list of inputs, each input is [first, last]
# The first and last are the first and last frames of the interpolation
# interpolation_cond_list = []
interpolation_cond_list_emb = []
# samples_x = [sample for i, sample in zip(to_remove, samples_x) if not i]
samples_z = [sample for i, sample in zip(to_remove, samples_z) if not i]
for i in range(0, len(samples_z) - 1, overlap if overlap > 0 else 2):
# interpolation_cond_list.append(
# torch.stack([samples_x[i], samples_x[i + 1]], dim=1)
# )
interpolation_cond_list_emb.append(
torch.stack([samples_z[i], samples_z[i + 1]], dim=1)
)
# condition = torch.stack(interpolation_cond_list).to(device)
audio_cond = torch.stack(audio_interpolation_list).to(device)
embbedings = torch.stack(interpolation_cond_list_emb).to(device)
gt_chunks = torch.stack(gt_chunks).to(device)
masks_chunks = torch.stack(masks_chunks).to(device)
H, W = 512, 512
F = 8
C = 4
shape = (num_frames * audio_cond.shape[0], C, H // F, W // F)
value_dict: Dict[str, Any] = {}
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
# value_dict["cond_frames_without_noise"] = condition
value_dict["cond_frames"] = embbedings
value_dict["cond_aug"] = cond_aug
if cut_audio:
value_dict["audio_emb"] = audio_cond[:, :, :, :768]
else:
value_dict["audio_emb"] = audio_cond
value_dict["gt"] = rearrange(gt_chunks, "b t c h w -> b c t h w").to(device)
value_dict["masks"] = masks_chunks.transpose(1, 2).to(device)
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch_overlap(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=force_uc_zero_embeddings,
)
for k in ["crossattn"]:
if c[k].shape[1] != num_frames:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
video = torch.randn(shape, device=device)
additional_model_inputs: Dict[str, torch.Tensor] = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
n_batch, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
# Debug information
print(
f"Shapes - Embeddings: {embbedings.shape}, "
f"Audio: {audio_cond.shape}, Video: {shape}, Additional inputs: {additional_model_inputs}"
)
if chunk_size is not None:
chunk_size = chunk_size * num_frames
def denoiser(
input: torch.Tensor, sigma: torch.Tensor, c: Dict[str, torch.Tensor]
) -> torch.Tensor:
return model.denoiser(
model.model,
input,
sigma,
c,
num_overlap_frames=overlap,
num_frames=num_frames,
n_skips=n_batch,
chunk_size=chunk_size,
**additional_model_inputs,
)
samples_z = model.sampler(denoiser, video, cond=c, uc=uc, strength=strength)
samples_z = rearrange(samples_z, "(b t) c h w -> b t c h w", t=num_frames)
samples_z[:, 0] = embbedings[:, :, 0]
samples_z[:, -1] = embbedings[:, :, 1]
samples_z = rearrange(samples_z, "b t c h w -> (b t) c h w")
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
# Free up memory
video = None
samples = rearrange(samples, "(b t) c h w -> b t c h w", t=num_frames)
samples = merge_overlapping_segments(samples, overlap)
vid = (
(rearrange(samples, "t c h w -> t c h w") * 255).cpu().numpy().astype(np.uint8)
)
return vid