Spaces:
Runtime error
Runtime error
File size: 35,577 Bytes
b5ce381 2fb3e22 b5ce381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 |
import gradio as gr
import torch
import tempfile
import os
from vae_wrapper import VaeWrapper, encode_video_chunk
from landmarks_extractor import LandmarksExtractor
import decord
from utils import (
get_raw_audio,
save_audio_video,
calculate_splits,
instantiate_from_config,
create_pipeline_inputs,
)
from transformers import HubertModel
from einops import rearrange
import numpy as np
from WavLM import WavLM_wrapper
from omegaconf import OmegaConf
from inference_functions import (
sample_keyframes,
sample_interpolation,
)
from wordle_game import WordleGame
import torch.cuda.amp as amp # Import amp for mixed precision
# Set default tensor type to float16 for faster computation
if torch.cuda.is_available():
# torch.set_default_tensor_type(torch.cuda.FloatTensor)
# Enable TF32 precision for better performance on Ampere+ GPUs
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Cache for video and audio processing
cache = {
"video": {
"path": None,
"embedding": None,
"frames": None,
"landmarks": None,
},
"audio": {
"path": None,
"raw_audio": None,
"hubert_embedding": None,
"wavlm_embedding": None,
},
}
# Create mixed precision scaler
scaler = amp.GradScaler()
def load_model(
config: str,
device: str = "cuda",
ckpt: str = None,
):
"""
Load a model from configuration.
Args:
config: Path to model configuration file
device: Device to load the model on
num_frames: Number of frames to process
input_key: Input key for the model
ckpt: Optional checkpoint path
Returns:
Tuple of (model, filter, batch size)
"""
config = OmegaConf.load(config)
config["model"]["params"]["input_key"] = "latents"
if ckpt is not None:
config.model.params.ckpt_path = ckpt
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval()
# Convert model to half precision
if torch.cuda.is_available():
model = model.half()
model.first_stage_model = model.first_stage_model.float()
print("Converted model to FP16 precision")
# Compile model for faster inference
if torch.cuda.is_available():
try:
model = torch.compile(model)
print(f"Successfully compiled model with torch.compile()")
except Exception as e:
print(f"Warning: Failed to compile model: {e}")
return model
# keyframe_model = KeyframeModel(device=device)
# interpolation_model = InterpolationModel(device=device)
vae_model = VaeWrapper("video")
if torch.cuda.is_available():
vae_model = vae_model.half() # Convert to half precision
try:
vae_model = torch.compile(vae_model)
print("Successfully compiled vae_model in FP16")
except Exception as e:
print(f"Warning: Failed to compile vae_model: {e}")
hubert_model = HubertModel.from_pretrained("facebook/hubert-base-ls960").cuda()
if torch.cuda.is_available():
hubert_model = hubert_model.half() # Convert to half precision
try:
hubert_model = torch.compile(hubert_model)
print("Successfully compiled hubert_model in FP16")
except Exception as e:
print(f"Warning: Failed to compile hubert_model: {e}")
wavlm_model = WavLM_wrapper(
model_size="Base+",
feed_as_frames=False,
merge_type="None",
model_path="/vol/paramonos2/projects/antoni/code/Personal/code_prep/keysync/pretrained_models/checkpoints/WavLM-Base+.pt",
).cuda()
if torch.cuda.is_available():
wavlm_model = wavlm_model.half() # Convert to half precision
try:
wavlm_model = torch.compile(wavlm_model)
print("Successfully compiled wavlm_model in FP16")
except Exception as e:
print(f"Warning: Failed to compile wavlm_model: {e}")
landmarks_extractor = LandmarksExtractor()
# keyframe_model = load_model(
# config="/vol/paramonos2/projects/antoni/code/Personal/code_prep/keysync/scripts/sampling/configs/keyframe.yaml",
# ckpt="/vol/paramonos2/projects/antoni/code/Personal/code_prep/keysync/pretrained_models/checkpoints/keyframe_dub.pt",
# )
# interpolation_model = load_model(
# config="/vol/paramonos2/projects/antoni/code/Personal/code_prep/keysync/scripts/sampling/configs/interpolation.yaml",
# ckpt="/vol/paramonos2/projects/antoni/code/Personal/code_prep/keysync/pretrained_models/checkpoints/interpolation_dub.pt",
# )
# keyframe_model.en_and_decode_n_samples_a_time = 2
# interpolation_model.en_and_decode_n_samples_a_time = 2
# Default media paths
DEFAULT_VIDEO_PATH = os.path.join(
os.path.dirname(__file__), "assets", "sample_video.mp4"
)
DEFAULT_AUDIO_PATH = os.path.join(
os.path.dirname(__file__), "assets", "sample_audio.wav"
)
@torch.no_grad()
def compute_video_embedding(video_reader, min_len):
"""Compute embeddings from video"""
total_frames = min_len
encoded = []
video_frames = []
chunk_size = 16
resolution = 512
# # Create a progress bar for Gradio
progress = gr.Progress()
# Calculate total chunks for progress tracking
total_chunks = (total_frames + chunk_size - 1) // chunk_size
for i, start_idx in enumerate(range(0, total_frames, chunk_size)):
# Update progress bar
progress(i / total_chunks, desc="Processing video chunks")
end_idx = min(start_idx + chunk_size, total_frames)
video_chunk = video_reader.get_batch(range(start_idx, end_idx))
# Interpolate video chunk to the target resolution
video_chunk = rearrange(video_chunk, "f h w c -> f c h w")
video_chunk = torch.nn.functional.interpolate(
video_chunk,
size=(resolution, resolution),
mode="bilinear",
align_corners=False,
)
video_chunk = rearrange(video_chunk, "f c h w -> f h w c")
video_frames.append(video_chunk)
# Convert chunk to FP16 if using CUDA
if torch.cuda.is_available():
video_chunk = video_chunk.half()
# Always use autocast for FP16 computation
with amp.autocast(enabled=True):
encoded.append(encode_video_chunk(vae_model, video_chunk, resolution))
encoded = torch.cat(encoded, dim=0)
video_frames = torch.cat(video_frames, dim=0)
video_frames = rearrange(video_frames, "f h w c -> f c h w")
torch.cuda.empty_cache()
return encoded, video_frames
@torch.no_grad()
def compute_hubert_embedding(raw_audio):
"""Compute embeddings from audio"""
print(f"Computing audio embedding from {raw_audio.shape}")
audio = (
(raw_audio - raw_audio.mean()) / torch.sqrt(raw_audio.var() + 1e-7)
).unsqueeze(0)
chunks = 16000 * 20
# Create a progress bar for Gradio
progress = gr.Progress()
# Get audio embeddings
audio_embeddings = []
splits = list(calculate_splits(audio, chunks))
total_splits = len(splits)
for i, chunk in enumerate(splits):
# Update progress bar
progress(i / total_splits, desc="Processing audio chunks")
# Convert audio chunk to half precision
if torch.cuda.is_available():
chunk_cuda = chunk.cuda().half()
else:
chunk_cuda = chunk.cuda()
# Always use autocast for FP16 computation
with amp.autocast(enabled=True):
hidden_states = hubert_model(chunk_cuda)[0]
audio_embeddings.append(hidden_states)
audio_embeddings = torch.cat(audio_embeddings, dim=1)
# audio_embeddings = self.model.wav2vec2(rearrange(audio_frames, "f s -> () (f s)"))[0]
if audio_embeddings.shape[1] % 2 != 0:
audio_embeddings = torch.cat(
[audio_embeddings, torch.zeros_like(audio_embeddings[:, :1])], dim=1
)
audio_embeddings = rearrange(audio_embeddings, "() (f d) c -> f d c", d=2)
torch.cuda.empty_cache()
return audio_embeddings
@torch.no_grad()
def compute_wavlm_embedding(raw_audio):
"""Compute embeddings from audio"""
audio = rearrange(raw_audio, "(f s) -> f s", s=640)
if audio.shape[0] % 2 != 0:
audio = torch.cat([audio, torch.zeros(1, 640)], dim=0)
chunks = 500
# Create a progress bar for Gradio
progress = gr.Progress()
# Get audio embeddings
audio_embeddings = []
splits = list(calculate_splits(audio, chunks))
total_splits = len(splits)
for i, chunk in enumerate(splits):
# Update progress bar
progress(i / total_splits, desc="Processing audio chunks")
# Convert chunk to half precision
if torch.cuda.is_available():
chunk_cuda = chunk.unsqueeze(0).cuda().half()
else:
chunk_cuda = chunk.unsqueeze(0).cuda()
# Always use autocast for FP16 computation
with amp.autocast(enabled=True):
wavlm_hidden_states = wavlm_model(chunk_cuda).squeeze(0)
audio_embeddings.append(wavlm_hidden_states)
audio_embeddings = torch.cat(audio_embeddings, dim=0)
torch.cuda.empty_cache()
return audio_embeddings
@torch.no_grad()
def extract_video_landmarks(video_frames):
"""Extract landmarks from video frames"""
# Create a progress bar for Gradio
progress = gr.Progress()
landmarks = []
batch_size = 10
for i in range(0, len(video_frames), batch_size):
# Update progress bar
progress(i / len(video_frames), desc="Extracting facial landmarks")
batch = video_frames[i : i + batch_size].cpu().float()
batch_landmarks = landmarks_extractor.extract_landmarks(batch)
landmarks.extend(batch_landmarks)
torch.cuda.empty_cache()
# Convert landmarks to a list of numpy arrays with consistent shape
processed_landmarks = []
expected_shape = (68, 2) # Common shape for facial landmarks
# Process each landmark to ensure consistent shape
last_valid_landmark = None
for i, lm in enumerate(landmarks):
if lm is not None and isinstance(lm, np.ndarray) and lm.shape == expected_shape:
processed_landmarks.append(lm)
last_valid_landmark = lm
else:
# Print information about inconsistent landmarks
if lm is None:
print(f"Warning: Landmark at index {i} is None")
elif not isinstance(lm, np.ndarray):
print(
f"Warning: Landmark at index {i} is not a numpy array, type: {type(lm)}"
)
elif lm.shape != expected_shape:
print(
f"Warning: Landmark at index {i} has shape {lm.shape}, expected {expected_shape}"
)
# Replace invalid landmarks with the closest valid landmark if available
if last_valid_landmark is not None:
processed_landmarks.append(last_valid_landmark.copy())
else:
# If no valid landmark has been seen yet, look ahead for a valid one
found_future_valid = False
for future_lm in landmarks[i + 1 :]:
if (
future_lm is not None
and isinstance(future_lm, np.ndarray)
and future_lm.shape == expected_shape
):
processed_landmarks.append(future_lm.copy())
found_future_valid = True
break
# If no valid landmark found in the future, use zeros
if not found_future_valid:
processed_landmarks.append(np.zeros(expected_shape))
return np.array(processed_landmarks)
@torch.no_grad()
def sample(
audio_list,
gt_keyframes,
masks_keyframes,
to_remove,
test_keyframes_list,
num_frames,
device,
emb,
force_uc_zero_embeddings,
n_batch_keyframes,
n_batch,
test_interpolation_list,
audio_interpolation_list,
masks_interpolation,
gt_interpolation,
model_keyframes,
model,
):
# Create a progress bar for Gradio
progress = gr.Progress()
condition = torch.zeros(1, 3, 512, 512).to(device)
if torch.cuda.is_available():
condition = condition.half()
audio_list = rearrange(audio_list, "(b t) c d -> b t c d", t=num_frames)
gt_keyframes = rearrange(gt_keyframes, "(b t) c h w -> b t c h w", t=num_frames)
# Rearrange masks_keyframes and save locally
masks_keyframes = rearrange(
masks_keyframes, "(b t) c h w -> b t c h w", t=num_frames
)
# Convert to_remove into chunks of num_frames
to_remove_chunks = [
to_remove[i : i + num_frames] for i in range(0, len(to_remove), num_frames)
]
test_keyframes_list = [
test_keyframes_list[i : i + num_frames]
for i in range(0, len(test_keyframes_list), num_frames)
]
audio_cond = audio_list
if emb is not None:
embbedings = emb.unsqueeze(0).to(device)
if torch.cuda.is_available():
embbedings = embbedings.half()
else:
embbedings = None
# One batch of keframes is approximately 7 seconds
chunk_size = 2
complete_video = []
start_idx = 0
last_frame_z = None
last_frame_x = None
last_keyframe_idx = None
last_to_remove = None
total_chunks = (len(audio_cond) + chunk_size - 1) // chunk_size
for chunk_idx, chunk_start in enumerate(range(0, len(audio_cond), chunk_size)):
# Update progress bar
progress(chunk_idx / total_chunks, desc="Generating video")
# Clear GPU cache between chunks
torch.cuda.empty_cache()
chunk_end = min(chunk_start + chunk_size, len(audio_cond))
chunk_audio_cond = audio_cond[chunk_start:chunk_end].cuda()
if torch.cuda.is_available():
chunk_audio_cond = chunk_audio_cond.half()
chunk_gt_keyframes = gt_keyframes[chunk_start:chunk_end].cuda()
chunk_masks = masks_keyframes[chunk_start:chunk_end].cuda()
if torch.cuda.is_available():
chunk_gt_keyframes = chunk_gt_keyframes.half()
chunk_masks = chunk_masks.half()
test_keyframes_list_unwrapped = [
elem
for sublist in test_keyframes_list[chunk_start:chunk_end]
for elem in sublist
]
to_remove_chunks_unwrapped = [
elem
for sublist in to_remove_chunks[chunk_start:chunk_end]
for elem in sublist
]
if last_keyframe_idx is not None:
test_keyframes_list_unwrapped = [
last_keyframe_idx
] + test_keyframes_list_unwrapped
to_remove_chunks_unwrapped = [last_to_remove] + to_remove_chunks_unwrapped
last_keyframe_idx = test_keyframes_list_unwrapped[-1]
last_to_remove = to_remove_chunks_unwrapped[-1]
# Find the first non-None keyframe in the chunk
first_keyframe = next(
(kf for kf in test_keyframes_list_unwrapped if kf is not None), None
)
# Find the last non-None keyframe in the chunk
last_keyframe = next(
(kf for kf in reversed(test_keyframes_list_unwrapped) if kf is not None),
None,
)
start_idx = next(
(
idx
for idx, comb in enumerate(test_interpolation_list)
if comb[0] == first_keyframe
),
None,
)
end_idx = next(
(
idx
for idx, comb in enumerate(reversed(test_interpolation_list))
if comb[1] == last_keyframe
),
None,
)
if start_idx is not None and end_idx is not None:
end_idx = (
len(test_interpolation_list) - 1 - end_idx
) # Adjust for reversed enumeration
end_idx += 1
if start_idx is None:
break
if end_idx < start_idx:
end_idx = len(audio_interpolation_list)
audio_interpolation_list_chunk = audio_interpolation_list[start_idx:end_idx]
chunk_masks_interpolation = masks_interpolation[start_idx:end_idx]
gt_interpolation_chunks = gt_interpolation[start_idx:end_idx]
if torch.cuda.is_available():
audio_interpolation_list_chunk = [
chunk.half() for chunk in audio_interpolation_list_chunk
]
chunk_masks_interpolation = [
chunk.half() for chunk in chunk_masks_interpolation
]
gt_interpolation_chunks = [
chunk.half() for chunk in gt_interpolation_chunks
]
progress(chunk_idx / total_chunks, desc="Generating keyframes")
# Always use autocast for FP16 computation
with amp.autocast(enabled=True):
samples_z = sample_keyframes(
model_keyframes,
chunk_audio_cond,
chunk_gt_keyframes,
chunk_masks,
condition.cuda(),
num_frames,
24,
0.0,
device,
embbedings.cuda() if embbedings is not None else None,
force_uc_zero_embeddings,
n_batch_keyframes,
0,
1.0,
None,
gt_as_cond=False,
)
if last_frame_x is not None:
# samples_x = torch.cat([last_frame_x.unsqueeze(0), samples_x], axis=0)
samples_z = torch.cat([last_frame_z.unsqueeze(0), samples_z], axis=0)
# last_frame_x = samples_x[-1]
last_frame_z = samples_z[-1]
progress(chunk_idx / total_chunks, desc="Interpolating frames")
# Always use autocast for FP16 computation
with amp.autocast(enabled=True):
vid = sample_interpolation(
model,
samples_z,
# samples_x,
audio_interpolation_list_chunk,
gt_interpolation_chunks,
chunk_masks_interpolation,
condition.cuda(),
num_frames,
device,
1,
24,
0.0,
force_uc_zero_embeddings,
n_batch,
chunk_size,
1.0,
None,
cut_audio=False,
to_remove=to_remove_chunks_unwrapped,
)
if chunk_start == 0:
complete_video = vid
else:
complete_video = np.concatenate([complete_video[:-1], vid], axis=0)
return complete_video
def process_video(video_input, audio_input, max_num_seconds):
"""Main processing function to generate synchronized video"""
# Display a message to the user about the processing time
gr.Info("Processing video. This may take a while...", duration=10)
gr.Info(
"If you're tired of waiting, try playing the Wordle game in the other tab!",
duration=10,
)
# Use default media if none provided
if video_input is None:
video_input = DEFAULT_VIDEO_PATH
print(f"Using default video: {DEFAULT_VIDEO_PATH}")
if audio_input is None:
audio_input = DEFAULT_AUDIO_PATH
print(f"Using default audio: {DEFAULT_AUDIO_PATH}")
try:
# Calculate hashes for cache keys
video_path_hash = video_input
audio_path_hash = audio_input
# Check if we need to recompute video embeddings
video_cache_hit = cache["video"]["path"] == video_path_hash
audio_cache_hit = cache["audio"]["path"] == audio_path_hash
if video_cache_hit and audio_cache_hit:
print("Using cached video and audio computations")
# Make copies of cached data to avoid modifying cache
video_embedding = cache["video"]["embedding"].clone()
video_frames = cache["video"]["frames"].clone()
video_landmarks = cache["video"]["landmarks"].copy()
raw_audio = cache["audio"]["raw_audio"].clone()
raw_audio_reshape = rearrange(raw_audio, "f s -> (f s)")
hubert_embedding = cache["audio"]["hubert_embedding"].clone()
wavlm_embedding = cache["audio"]["wavlm_embedding"].clone()
# Ensure all data is truncated to the same length if needed
min_len = min(
len(video_frames),
len(raw_audio),
len(hubert_embedding),
len(wavlm_embedding),
)
video_frames = video_frames[:min_len]
video_embedding = video_embedding[:min_len]
video_landmarks = video_landmarks[:min_len]
raw_audio = raw_audio[:min_len]
hubert_embedding = hubert_embedding[:min_len]
wavlm_embedding = wavlm_embedding[:min_len]
raw_audio_reshape = rearrange(raw_audio, "f s -> (f s)")
else:
# Process video if needed
if not video_cache_hit:
print("Computing video embeddings and landmarks")
video_reader = decord.VideoReader(video_input)
decord.bridge.set_bridge("torch")
if not audio_cache_hit:
# Need to process audio to determine min_len
raw_audio = get_raw_audio(audio_input, 16000)
if len(raw_audio) == 0 or len(video_reader) == 0:
raise ValueError("Empty audio or video input")
min_len = min(len(raw_audio), len(video_reader))
# Store full audio in cache
cache["audio"]["path"] = audio_path_hash
cache["audio"]["raw_audio"] = raw_audio.clone()
# Create truncated copy for processing
raw_audio = raw_audio[:min_len]
raw_audio_reshape = rearrange(raw_audio, "f s -> (f s)")
else:
# Use cached audio - make a copy
if cache["audio"]["raw_audio"] is None:
raise ValueError("Cached audio is None")
raw_audio = cache["audio"]["raw_audio"].clone()
if len(raw_audio) == 0 or len(video_reader) == 0:
raise ValueError("Empty cached audio or video input")
min_len = min(len(raw_audio), len(video_reader))
# Create truncated copy for processing
raw_audio = raw_audio[:min_len]
raw_audio_reshape = rearrange(raw_audio, "f s -> (f s)")
# Compute video embeddings and landmarks - store full version in cache
video_embedding, video_frames = compute_video_embedding(
video_reader, len(video_reader)
)
video_landmarks = extract_video_landmarks(video_frames)
# Update video cache with full versions
cache["video"]["path"] = video_path_hash
cache["video"]["embedding"] = video_embedding
cache["video"]["frames"] = video_frames
cache["video"]["landmarks"] = video_landmarks
# Create truncated copies for processing
video_embedding = video_embedding[:min_len]
video_frames = video_frames[:min_len]
video_landmarks = video_landmarks[:min_len]
else:
# Use cached video data - make copies
print("Using cached video computations")
if (
cache["video"]["embedding"] is None
or cache["video"]["frames"] is None
or cache["video"]["landmarks"] is None
):
raise ValueError("One or more video cache entries are None")
if not audio_cache_hit:
# New audio with cached video
raw_audio = get_raw_audio(audio_input, 16000)
if len(raw_audio) == 0:
raise ValueError("Empty audio input")
# Store full audio in cache
cache["audio"]["path"] = audio_path_hash
cache["audio"]["raw_audio"] = raw_audio.clone()
# Make copies of video data
video_embedding = cache["video"]["embedding"].clone()
video_frames = cache["video"]["frames"].clone()
video_landmarks = cache["video"]["landmarks"].copy()
# Determine truncation length and create truncated copies
min_len = min(len(raw_audio), len(video_frames))
raw_audio = raw_audio[:min_len]
raw_audio_reshape = rearrange(raw_audio, "f s -> (f s)")
video_frames = video_frames[:min_len]
video_embedding = video_embedding[:min_len]
video_landmarks = video_landmarks[:min_len]
else:
# Both video and audio are cached - should not reach here
# as it's handled in the first if statement
pass
# Process audio if needed
if not audio_cache_hit:
print("Computing audio embeddings")
# Compute audio embeddings with the truncated audio
hubert_embedding = compute_hubert_embedding(raw_audio_reshape)
wavlm_embedding = compute_wavlm_embedding(raw_audio_reshape)
# Update audio cache with full embeddings
# Note: raw_audio was already cached above
cache["audio"]["hubert_embedding"] = hubert_embedding.clone()
cache["audio"]["wavlm_embedding"] = wavlm_embedding.clone()
else:
# Use cached audio data - make copies
if (
cache["audio"]["hubert_embedding"] is None
or cache["audio"]["wavlm_embedding"] is None
):
raise ValueError(
"One or more audio embedding cache entries are None"
)
hubert_embedding = cache["audio"]["hubert_embedding"].clone()
wavlm_embedding = cache["audio"]["wavlm_embedding"].clone()
# Make sure embeddings match the truncated video length if needed
if "min_len" in locals() and (
min_len < len(hubert_embedding) or min_len < len(wavlm_embedding)
):
hubert_embedding = hubert_embedding[:min_len]
wavlm_embedding = wavlm_embedding[:min_len]
# Apply max_num_seconds limit if specified
if max_num_seconds > 0:
# Convert seconds to frames (assuming 25 fps)
max_frames = int(max_num_seconds * 25)
# Truncate all data to max_frames
video_embedding = video_embedding[:max_frames]
video_frames = video_frames[:max_frames]
video_landmarks = video_landmarks[:max_frames]
hubert_embedding = hubert_embedding[:max_frames]
wavlm_embedding = wavlm_embedding[:max_frames]
raw_audio = raw_audio[:max_frames]
raw_audio_reshape = rearrange(raw_audio, "f s -> (f s)")
# Validate shapes before proceeding
assert video_embedding.shape[0] == hubert_embedding.shape[0], (
f"Video embedding length ({video_embedding.shape[0]}) doesn't match Hubert embedding length ({hubert_embedding.shape[0]})"
)
assert video_embedding.shape[0] == wavlm_embedding.shape[0], (
f"Video embedding length ({video_embedding.shape[0]}) doesn't match WavLM embedding length ({wavlm_embedding.shape[0]})"
)
assert video_embedding.shape[0] == video_landmarks.shape[0], (
f"Video embedding length ({video_embedding.shape[0]}) doesn't match landmarks length ({video_landmarks.shape[0]})"
)
print(f"Hubert embedding shape: {hubert_embedding.shape}")
print(f"WavLM embedding shape: {wavlm_embedding.shape}")
print(f"Video embedding shape: {video_embedding.shape}")
print(f"Video landmarks shape: {video_landmarks.shape}")
# Create pipeline inputs for models
(
interpolation_chunks,
keyframe_chunks,
audio_interpolation_chunks,
audio_keyframe_chunks,
emb_cond,
masks_keyframe_chunks,
masks_interpolation_chunks,
to_remove,
audio_interpolation_idx,
audio_keyframe_idx,
) = create_pipeline_inputs(
hubert_embedding,
wavlm_embedding,
14,
video_embedding,
video_landmarks,
overlap=1,
add_zero_flag=True,
mask_arms=None,
nose_index=28,
)
complete_video = sample(
audio_keyframe_chunks,
keyframe_chunks,
masks_keyframe_chunks,
to_remove,
audio_keyframe_idx,
14,
"cuda",
emb_cond,
[],
3,
3,
audio_interpolation_idx,
audio_interpolation_chunks,
masks_interpolation_chunks,
interpolation_chunks,
keyframe_model,
interpolation_model,
)
complete_audio = rearrange(
raw_audio[: complete_video.shape[0]], "f s -> () (f s)"
)
# 4. Convert frames to video and combine with audio
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video:
output_path = temp_video.name
print("Saving video to", output_path)
save_audio_video(complete_video, audio=complete_audio, save_path=output_path)
torch.cuda.empty_cache()
return output_path
except Exception as e:
raise e
print(f"Error processing video: {str(e)}")
return None
def get_max_duration(video_input, audio_input):
"""Get the maximum duration in seconds for the slider"""
try:
# Default to 60 seconds if files don't exist
if video_input is None or not os.path.exists(video_input):
video_input = DEFAULT_VIDEO_PATH
if audio_input is None or not os.path.exists(audio_input):
audio_input = DEFAULT_AUDIO_PATH
# Get video duration
video_reader = decord.VideoReader(video_input)
video_duration = len(video_reader) / video_reader.get_avg_fps()
# Get audio duration
raw_audio = get_raw_audio(audio_input, 16000)
audio_duration = len(raw_audio) / 25 # Assuming 25 fps
# Return the minimum of the two durations
return min(video_duration, audio_duration)
except Exception as e:
print(f"Error getting max duration: {str(e)}")
return 60 # Default to 60 seconds
def new_game_click(state):
"""Handle the 'New Game' button click."""
message = state.new_game()
feedback_history = state.get_feedback_history()
return state, feedback_history, message
def submit_guess_click(guess, state):
"""Handle the 'Submit Guess' button click."""
message = state.submit_guess(guess)
feedback_history = state.get_feedback_history()
return state, feedback_history, message
# Create Gradio interface
with gr.Blocks(title="Video Synchronization with Diffusion Models") as demo:
gr.Markdown("# Video Synchronization with Diffusion Models")
gr.Markdown(
"Upload a video and audio to create a synchronized video with the same visuals but synchronized to the new audio."
)
with gr.Tabs():
with gr.TabItem("Video Synchronization"):
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Input Video",
value=DEFAULT_VIDEO_PATH
if os.path.exists(DEFAULT_VIDEO_PATH)
else None,
width=512,
height=512,
)
audio_input = gr.Audio(
label="Input Audio",
type="filepath",
value=DEFAULT_AUDIO_PATH
if os.path.exists(DEFAULT_AUDIO_PATH)
else None,
)
max_duration = gr.State(value=60) # Default max duration
max_seconds_slider = gr.Slider(
minimum=0,
maximum=60, # Will be updated dynamically
value=0,
step=1,
label="Max Duration (seconds, 0 = full length)",
info="Limit the processing duration (0 means use full length)",
)
process_button = gr.Button("Generate Synchronized Video")
with gr.Column("Output Video"):
video_output = gr.Video(label="Output Video", width=512, height=512)
# Update slider max value when inputs change
def update_slider_max(video, audio):
max_dur = get_max_duration(video, audio)
return {"maximum": max_dur, "__type__": "update"}
video_input.change(
update_slider_max, [video_input, audio_input], [max_seconds_slider]
)
audio_input.change(
update_slider_max, [video_input, audio_input], [max_seconds_slider]
)
# Show Wordle message when processing starts and hide when complete
process_button.click(
fn=process_video,
inputs=[video_input, audio_input, max_seconds_slider],
outputs=video_output,
)
with gr.TabItem("Wordle Game"):
state = gr.State(WordleGame()) # Persist the WordleGame instance
guess_input = gr.Textbox(label="Your guess (5 letters)", max_length=5)
submit_btn = gr.Button("Submit Guess")
new_game_btn = gr.Button("New Game")
feedback_display = gr.HTML(label="Guesses")
message_display = gr.Textbox(
label="Message", interactive=False, value="Click 'New Game' to start."
)
# Connect the 'New Game' button
new_game_btn.click(
fn=new_game_click,
inputs=[state],
outputs=[state, feedback_display, message_display],
)
# Connect the 'Submit Guess' button
submit_btn.click(
fn=submit_guess_click,
inputs=[guess_input, state],
outputs=[state, feedback_display, message_display],
)
gr.Markdown("## How it works")
gr.Markdown("""
1. The system extracts embeddings and landmarks from the input video
2. Audio embeddings are computed from the input audio
3. A keyframe model generates key visual frames
4. An interpolation model creates a smooth video between keyframes
5. The final video is rendered with the new audio
""")
if __name__ == "__main__":
demo.launch()
|