|
|
|
|
|
import subprocess |
|
|
|
from ultralytics.cfg import TASK2DATA, TASK2METRIC |
|
from ultralytics.utils import DEFAULT_CFG_DICT, LOGGER, NUM_THREADS |
|
|
|
|
|
def run_ray_tune(model, |
|
space: dict = None, |
|
grace_period: int = 10, |
|
gpu_per_trial: int = None, |
|
max_samples: int = 10, |
|
**train_args): |
|
""" |
|
Runs hyperparameter tuning using Ray Tune. |
|
|
|
Args: |
|
model (YOLO): Model to run the tuner on. |
|
space (dict, optional): The hyperparameter search space. Defaults to None. |
|
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. |
|
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. |
|
max_samples (int, optional): The maximum number of trials to run. Defaults to 10. |
|
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. |
|
|
|
Returns: |
|
(dict): A dictionary containing the results of the hyperparameter search. |
|
|
|
Example: |
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load a YOLOv8n model |
|
model = YOLO('yolov8n.pt') |
|
|
|
# Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset |
|
result_grid = model.tune(data='coco8.yaml', use_ray=True) |
|
``` |
|
""" |
|
if train_args is None: |
|
train_args = {} |
|
|
|
try: |
|
subprocess.run('pip install ray[tune]'.split(), check=True) |
|
|
|
from ray import tune |
|
from ray.air import RunConfig |
|
from ray.air.integrations.wandb import WandbLoggerCallback |
|
from ray.tune.schedulers import ASHAScheduler |
|
except ImportError: |
|
raise ModuleNotFoundError('Tuning hyperparameters requires Ray Tune. Install with: pip install "ray[tune]"') |
|
|
|
try: |
|
import wandb |
|
|
|
assert hasattr(wandb, '__version__') |
|
except (ImportError, AssertionError): |
|
wandb = False |
|
|
|
default_space = { |
|
|
|
'lr0': tune.uniform(1e-5, 1e-1), |
|
'lrf': tune.uniform(0.01, 1.0), |
|
'momentum': tune.uniform(0.6, 0.98), |
|
'weight_decay': tune.uniform(0.0, 0.001), |
|
'warmup_epochs': tune.uniform(0.0, 5.0), |
|
'warmup_momentum': tune.uniform(0.0, 0.95), |
|
'box': tune.uniform(0.02, 0.2), |
|
'cls': tune.uniform(0.2, 4.0), |
|
'hsv_h': tune.uniform(0.0, 0.1), |
|
'hsv_s': tune.uniform(0.0, 0.9), |
|
'hsv_v': tune.uniform(0.0, 0.9), |
|
'degrees': tune.uniform(0.0, 45.0), |
|
'translate': tune.uniform(0.0, 0.9), |
|
'scale': tune.uniform(0.0, 0.9), |
|
'shear': tune.uniform(0.0, 10.0), |
|
'perspective': tune.uniform(0.0, 0.001), |
|
'flipud': tune.uniform(0.0, 1.0), |
|
'fliplr': tune.uniform(0.0, 1.0), |
|
'mosaic': tune.uniform(0.0, 1.0), |
|
'mixup': tune.uniform(0.0, 1.0), |
|
'copy_paste': tune.uniform(0.0, 1.0)} |
|
|
|
def _tune(config): |
|
""" |
|
Trains the YOLO model with the specified hyperparameters and additional arguments. |
|
|
|
Args: |
|
config (dict): A dictionary of hyperparameters to use for training. |
|
|
|
Returns: |
|
None. |
|
""" |
|
model._reset_callbacks() |
|
config.update(train_args) |
|
model.train(**config) |
|
|
|
|
|
if not space: |
|
space = default_space |
|
LOGGER.warning('WARNING ⚠️ search space not provided, using default search space.') |
|
|
|
|
|
data = train_args.get('data', TASK2DATA[model.task]) |
|
space['data'] = data |
|
if 'data' not in train_args: |
|
LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".') |
|
|
|
|
|
trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0}) |
|
|
|
|
|
asha_scheduler = ASHAScheduler(time_attr='epoch', |
|
metric=TASK2METRIC[model.task], |
|
mode='max', |
|
max_t=train_args.get('epochs') or DEFAULT_CFG_DICT['epochs'] or 100, |
|
grace_period=grace_period, |
|
reduction_factor=3) |
|
|
|
|
|
tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else [] |
|
|
|
|
|
tuner = tune.Tuner(trainable_with_resources, |
|
param_space=space, |
|
tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples), |
|
run_config=RunConfig(callbacks=tuner_callbacks, storage_path='./runs/tune')) |
|
|
|
|
|
tuner.fit() |
|
|
|
|
|
return tuner.get_results() |
|
|