|
|
|
|
|
import contextlib |
|
import math |
|
import warnings |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
from PIL import __version__ as pil_version |
|
|
|
from ultralytics.utils import LOGGER, TryExcept, plt_settings, threaded |
|
|
|
from .checks import check_font, check_version, is_ascii |
|
from .files import increment_path |
|
from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh |
|
|
|
|
|
class Colors: |
|
""" |
|
Ultralytics default color palette https://ultralytics.com/. |
|
|
|
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to |
|
RGB values. |
|
|
|
Attributes: |
|
palette (list of tuple): List of RGB color values. |
|
n (int): The number of colors in the palette. |
|
pose_palette (np.array): A specific color palette array with dtype np.uint8. |
|
""" |
|
|
|
def __init__(self): |
|
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().""" |
|
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', |
|
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') |
|
self.palette = [self.hex2rgb(f'#{c}') for c in hexs] |
|
self.n = len(self.palette) |
|
self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], |
|
[153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], |
|
[255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], |
|
[51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]], |
|
dtype=np.uint8) |
|
|
|
def __call__(self, i, bgr=False): |
|
"""Converts hex color codes to RGB values.""" |
|
c = self.palette[int(i) % self.n] |
|
return (c[2], c[1], c[0]) if bgr else c |
|
|
|
@staticmethod |
|
def hex2rgb(h): |
|
"""Converts hex color codes to RGB values (i.e. default PIL order).""" |
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) |
|
|
|
|
|
colors = Colors() |
|
|
|
|
|
class Annotator: |
|
""" |
|
Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations. |
|
|
|
Attributes: |
|
im (Image.Image or numpy array): The image to annotate. |
|
pil (bool): Whether to use PIL or cv2 for drawing annotations. |
|
font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations. |
|
lw (float): Line width for drawing. |
|
skeleton (List[List[int]]): Skeleton structure for keypoints. |
|
limb_color (List[int]): Color palette for limbs. |
|
kpt_color (List[int]): Color palette for keypoints. |
|
""" |
|
|
|
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): |
|
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.""" |
|
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' |
|
non_ascii = not is_ascii(example) |
|
self.pil = pil or non_ascii |
|
if self.pil: |
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) |
|
self.draw = ImageDraw.Draw(self.im) |
|
try: |
|
font = check_font('Arial.Unicode.ttf' if non_ascii else font) |
|
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12) |
|
self.font = ImageFont.truetype(str(font), size) |
|
except Exception: |
|
self.font = ImageFont.load_default() |
|
|
|
if check_version(pil_version, '9.2.0'): |
|
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] |
|
else: |
|
self.im = im |
|
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) |
|
|
|
self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], |
|
[8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] |
|
|
|
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]] |
|
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]] |
|
|
|
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): |
|
"""Add one xyxy box to image with label.""" |
|
if isinstance(box, torch.Tensor): |
|
box = box.tolist() |
|
if self.pil or not is_ascii(label): |
|
self.draw.rectangle(box, width=self.lw, outline=color) |
|
if label: |
|
w, h = self.font.getsize(label) |
|
outside = box[1] - h >= 0 |
|
self.draw.rectangle( |
|
(box[0], box[1] - h if outside else box[1], box[0] + w + 1, |
|
box[1] + 1 if outside else box[1] + h + 1), |
|
fill=color, |
|
) |
|
|
|
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) |
|
else: |
|
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) |
|
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) |
|
if label: |
|
tf = max(self.lw - 1, 1) |
|
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] |
|
outside = p1[1] - h >= 3 |
|
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 |
|
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) |
|
cv2.putText(self.im, |
|
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), |
|
0, |
|
self.lw / 3, |
|
txt_color, |
|
thickness=tf, |
|
lineType=cv2.LINE_AA) |
|
|
|
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): |
|
""" |
|
Plot masks on image. |
|
|
|
Args: |
|
masks (tensor): Predicted masks on cuda, shape: [n, h, w] |
|
colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n] |
|
im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1] |
|
alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque |
|
retina_masks (bool): Whether to use high resolution masks or not. Defaults to False. |
|
""" |
|
if self.pil: |
|
|
|
self.im = np.asarray(self.im).copy() |
|
if len(masks) == 0: |
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 |
|
if im_gpu.device != masks.device: |
|
im_gpu = im_gpu.to(masks.device) |
|
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 |
|
colors = colors[:, None, None] |
|
masks = masks.unsqueeze(3) |
|
masks_color = masks * (colors * alpha) |
|
|
|
inv_alph_masks = (1 - masks * alpha).cumprod(0) |
|
mcs = masks_color.max(dim=0).values |
|
|
|
im_gpu = im_gpu.flip(dims=[0]) |
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() |
|
im_gpu = im_gpu * inv_alph_masks[-1] + mcs |
|
im_mask = (im_gpu * 255) |
|
im_mask_np = im_mask.byte().cpu().numpy() |
|
self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape) |
|
if self.pil: |
|
|
|
self.fromarray(self.im) |
|
|
|
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True): |
|
""" |
|
Plot keypoints on the image. |
|
|
|
Args: |
|
kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence). |
|
shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width. |
|
radius (int, optional): Radius of the drawn keypoints. Default is 5. |
|
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints |
|
for human pose. Default is True. |
|
|
|
Note: `kpt_line=True` currently only supports human pose plotting. |
|
""" |
|
if self.pil: |
|
|
|
self.im = np.asarray(self.im).copy() |
|
nkpt, ndim = kpts.shape |
|
is_pose = nkpt == 17 and ndim == 3 |
|
kpt_line &= is_pose |
|
for i, k in enumerate(kpts): |
|
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i) |
|
x_coord, y_coord = k[0], k[1] |
|
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0: |
|
if len(k) == 3: |
|
conf = k[2] |
|
if conf < 0.5: |
|
continue |
|
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA) |
|
|
|
if kpt_line: |
|
ndim = kpts.shape[-1] |
|
for i, sk in enumerate(self.skeleton): |
|
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1])) |
|
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1])) |
|
if ndim == 3: |
|
conf1 = kpts[(sk[0] - 1), 2] |
|
conf2 = kpts[(sk[1] - 1), 2] |
|
if conf1 < 0.5 or conf2 < 0.5: |
|
continue |
|
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0: |
|
continue |
|
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0: |
|
continue |
|
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA) |
|
if self.pil: |
|
|
|
self.fromarray(self.im) |
|
|
|
def rectangle(self, xy, fill=None, outline=None, width=1): |
|
"""Add rectangle to image (PIL-only).""" |
|
self.draw.rectangle(xy, fill, outline, width) |
|
|
|
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False): |
|
"""Adds text to an image using PIL or cv2.""" |
|
if anchor == 'bottom': |
|
w, h = self.font.getsize(text) |
|
xy[1] += 1 - h |
|
if self.pil: |
|
if box_style: |
|
w, h = self.font.getsize(text) |
|
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color) |
|
|
|
txt_color = (255, 255, 255) |
|
if '\n' in text: |
|
lines = text.split('\n') |
|
_, h = self.font.getsize(text) |
|
for line in lines: |
|
self.draw.text(xy, line, fill=txt_color, font=self.font) |
|
xy[1] += h |
|
else: |
|
self.draw.text(xy, text, fill=txt_color, font=self.font) |
|
else: |
|
if box_style: |
|
tf = max(self.lw - 1, 1) |
|
w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] |
|
outside = xy[1] - h >= 3 |
|
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3 |
|
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) |
|
|
|
txt_color = (255, 255, 255) |
|
tf = max(self.lw - 1, 1) |
|
cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA) |
|
|
|
def fromarray(self, im): |
|
"""Update self.im from a numpy array.""" |
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) |
|
self.draw = ImageDraw.Draw(self.im) |
|
|
|
def result(self): |
|
"""Return annotated image as array.""" |
|
return np.asarray(self.im) |
|
|
|
|
|
@TryExcept() |
|
@plt_settings() |
|
def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None): |
|
"""Plot training labels including class histograms and box statistics.""" |
|
import pandas as pd |
|
import seaborn as sn |
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='The figure layout has changed to tight') |
|
|
|
|
|
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") |
|
nc = int(cls.max() + 1) |
|
boxes = boxes[:1000000] |
|
x = pd.DataFrame(boxes, columns=['x', 'y', 'width', 'height']) |
|
|
|
|
|
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) |
|
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) |
|
plt.close() |
|
|
|
|
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() |
|
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) |
|
with contextlib.suppress(Exception): |
|
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] |
|
ax[0].set_ylabel('instances') |
|
if 0 < len(names) < 30: |
|
ax[0].set_xticks(range(len(names))) |
|
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) |
|
else: |
|
ax[0].set_xlabel('classes') |
|
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) |
|
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) |
|
|
|
|
|
boxes[:, 0:2] = 0.5 |
|
boxes = xywh2xyxy(boxes) * 1000 |
|
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255) |
|
for cls, box in zip(cls[:500], boxes[:500]): |
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) |
|
ax[1].imshow(img) |
|
ax[1].axis('off') |
|
|
|
for a in [0, 1, 2, 3]: |
|
for s in ['top', 'right', 'left', 'bottom']: |
|
ax[a].spines[s].set_visible(False) |
|
|
|
fname = save_dir / 'labels.jpg' |
|
plt.savefig(fname, dpi=200) |
|
plt.close() |
|
if on_plot: |
|
on_plot(fname) |
|
|
|
|
|
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): |
|
"""Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop. |
|
|
|
This function takes a bounding box and an image, and then saves a cropped portion of the image according |
|
to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding |
|
adjustments to the bounding box. |
|
|
|
Args: |
|
xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format. |
|
im (numpy.ndarray): The input image. |
|
file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'. |
|
gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02. |
|
pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10. |
|
square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False. |
|
BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False. |
|
save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True. |
|
|
|
Returns: |
|
(numpy.ndarray): The cropped image. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils.plotting import save_one_box |
|
|
|
xyxy = [50, 50, 150, 150] |
|
im = cv2.imread('image.jpg') |
|
cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True) |
|
``` |
|
""" |
|
|
|
if not isinstance(xyxy, torch.Tensor): |
|
xyxy = torch.stack(xyxy) |
|
b = xyxy2xywh(xyxy.view(-1, 4)) |
|
if square: |
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) |
|
b[:, 2:] = b[:, 2:] * gain + pad |
|
xyxy = xywh2xyxy(b).long() |
|
clip_boxes(xyxy, im.shape) |
|
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] |
|
if save: |
|
file.parent.mkdir(parents=True, exist_ok=True) |
|
f = str(increment_path(file).with_suffix('.jpg')) |
|
|
|
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) |
|
return crop |
|
|
|
|
|
@threaded |
|
def plot_images(images, |
|
batch_idx, |
|
cls, |
|
bboxes=np.zeros(0, dtype=np.float32), |
|
masks=np.zeros(0, dtype=np.uint8), |
|
kpts=np.zeros((0, 51), dtype=np.float32), |
|
paths=None, |
|
fname='images.jpg', |
|
names=None, |
|
on_plot=None): |
|
"""Plot image grid with labels.""" |
|
if isinstance(images, torch.Tensor): |
|
images = images.cpu().float().numpy() |
|
if isinstance(cls, torch.Tensor): |
|
cls = cls.cpu().numpy() |
|
if isinstance(bboxes, torch.Tensor): |
|
bboxes = bboxes.cpu().numpy() |
|
if isinstance(masks, torch.Tensor): |
|
masks = masks.cpu().numpy().astype(int) |
|
if isinstance(kpts, torch.Tensor): |
|
kpts = kpts.cpu().numpy() |
|
if isinstance(batch_idx, torch.Tensor): |
|
batch_idx = batch_idx.cpu().numpy() |
|
|
|
max_size = 1920 |
|
max_subplots = 16 |
|
bs, _, h, w = images.shape |
|
bs = min(bs, max_subplots) |
|
ns = np.ceil(bs ** 0.5) |
|
if np.max(images[0]) <= 1: |
|
images *= 255 |
|
|
|
|
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) |
|
for i, im in enumerate(images): |
|
if i == max_subplots: |
|
break |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
im = im.transpose(1, 2, 0) |
|
mosaic[y:y + h, x:x + w, :] = im |
|
|
|
|
|
scale = max_size / ns / max(h, w) |
|
if scale < 1: |
|
h = math.ceil(scale * h) |
|
w = math.ceil(scale * w) |
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) |
|
|
|
|
|
fs = int((h + w) * ns * 0.01) |
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) |
|
for i in range(i + 1): |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) |
|
if paths: |
|
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) |
|
if len(cls) > 0: |
|
idx = batch_idx == i |
|
classes = cls[idx].astype('int') |
|
|
|
if len(bboxes): |
|
boxes = xywh2xyxy(bboxes[idx, :4]).T |
|
labels = bboxes.shape[1] == 4 |
|
conf = None if labels else bboxes[idx, 4] |
|
|
|
if boxes.shape[1]: |
|
if boxes.max() <= 1.01: |
|
boxes[[0, 2]] *= w |
|
boxes[[1, 3]] *= h |
|
elif scale < 1: |
|
boxes *= scale |
|
boxes[[0, 2]] += x |
|
boxes[[1, 3]] += y |
|
for j, box in enumerate(boxes.T.tolist()): |
|
c = classes[j] |
|
color = colors(c) |
|
c = names.get(c, c) if names else c |
|
if labels or conf[j] > 0.25: |
|
label = f'{c}' if labels else f'{c} {conf[j]:.1f}' |
|
annotator.box_label(box, label, color=color) |
|
elif len(classes): |
|
for c in classes: |
|
color = colors(c) |
|
c = names.get(c, c) if names else c |
|
annotator.text((x, y), f'{c}', txt_color=color, box_style=True) |
|
|
|
|
|
if len(kpts): |
|
kpts_ = kpts[idx].copy() |
|
if len(kpts_): |
|
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: |
|
kpts_[..., 0] *= w |
|
kpts_[..., 1] *= h |
|
elif scale < 1: |
|
kpts_ *= scale |
|
kpts_[..., 0] += x |
|
kpts_[..., 1] += y |
|
for j in range(len(kpts_)): |
|
if labels or conf[j] > 0.25: |
|
annotator.kpts(kpts_[j]) |
|
|
|
|
|
if len(masks): |
|
if idx.shape[0] == masks.shape[0]: |
|
image_masks = masks[idx] |
|
else: |
|
image_masks = masks[[i]] |
|
nl = idx.sum() |
|
index = np.arange(nl).reshape((nl, 1, 1)) + 1 |
|
image_masks = np.repeat(image_masks, nl, axis=0) |
|
image_masks = np.where(image_masks == index, 1.0, 0.0) |
|
|
|
im = np.asarray(annotator.im).copy() |
|
for j, box in enumerate(boxes.T.tolist()): |
|
if labels or conf[j] > 0.25: |
|
color = colors(classes[j]) |
|
mh, mw = image_masks[j].shape |
|
if mh != h or mw != w: |
|
mask = image_masks[j].astype(np.uint8) |
|
mask = cv2.resize(mask, (w, h)) |
|
mask = mask.astype(bool) |
|
else: |
|
mask = image_masks[j].astype(bool) |
|
with contextlib.suppress(Exception): |
|
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 |
|
annotator.fromarray(im) |
|
annotator.im.save(fname) |
|
if on_plot: |
|
on_plot(fname) |
|
|
|
|
|
@plt_settings() |
|
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None): |
|
""" |
|
Plot training results from results CSV file. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils.plotting import plot_results |
|
|
|
plot_results('path/to/results.csv') |
|
``` |
|
""" |
|
import pandas as pd |
|
from scipy.ndimage import gaussian_filter1d |
|
save_dir = Path(file).parent if file else Path(dir) |
|
if classify: |
|
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True) |
|
index = [1, 4, 2, 3] |
|
elif segment: |
|
fig, ax = plt.subplots(4, 6, figsize=(18, 6), tight_layout=True) |
|
|
|
index = [0, 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12, 17, 18, 19, 20, 21] |
|
elif pose: |
|
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True) |
|
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13] |
|
else: |
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) |
|
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7] |
|
ax = ax.ravel() |
|
files = list(save_dir.glob('results*.csv')) |
|
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' |
|
for f in files: |
|
try: |
|
data = pd.read_csv(f) |
|
s = [x.strip() for x in data.columns] |
|
x = data.values[:, 0] |
|
for i, j in enumerate(index): |
|
y = data.values[:, j].astype('float') |
|
|
|
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) |
|
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) |
|
ax[i].set_title(s[j], fontsize=12) |
|
|
|
|
|
except Exception as e: |
|
LOGGER.warning(f'WARNING: Plotting error for {f}: {e}') |
|
ax[1].legend() |
|
fname = save_dir / 'results.png' |
|
fig.savefig(fname, dpi=200) |
|
plt.close() |
|
if on_plot: |
|
on_plot(fname) |
|
|
|
|
|
def output_to_target(output, max_det=300): |
|
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" |
|
targets = [] |
|
for i, o in enumerate(output): |
|
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) |
|
j = torch.full((conf.shape[0], 1), i) |
|
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) |
|
targets = torch.cat(targets, 0).numpy() |
|
return targets[:, 0], targets[:, 1], targets[:, 2:] |
|
|
|
|
|
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): |
|
""" |
|
Visualize feature maps of a given model module during inference. |
|
|
|
Args: |
|
x (torch.Tensor): Features to be visualized. |
|
module_type (str): Module type. |
|
stage (int): Module stage within the model. |
|
n (int, optional): Maximum number of feature maps to plot. Defaults to 32. |
|
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp'). |
|
""" |
|
for m in ['Detect', 'Pose', 'Segment']: |
|
if m in module_type: |
|
return |
|
batch, channels, height, width = x.shape |
|
if height > 1 and width > 1: |
|
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" |
|
|
|
blocks = torch.chunk(x[0].cpu(), channels, dim=0) |
|
n = min(n, channels) |
|
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) |
|
ax = ax.ravel() |
|
plt.subplots_adjust(wspace=0.05, hspace=0.05) |
|
for i in range(n): |
|
ax[i].imshow(blocks[i].squeeze()) |
|
ax[i].axis('off') |
|
|
|
LOGGER.info(f'Saving {f}... ({n}/{channels})') |
|
plt.savefig(f, dpi=300, bbox_inches='tight') |
|
plt.close() |
|
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) |
|
|