tomrb's picture
initial yolov8to
ab854b9
raw
history blame
32.8 kB
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.utils.metrics import OKS_SIGMA
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from .metrics import bbox_iou
from .tal import bbox2dist
import numpy as np
import sys
# torch.autograd.set_detect_anomaly(True)
def display_shape(input_item, prefix=""):
# If the input_item is a list or a tuple, iterate through its elements
if isinstance(input_item, (list, tuple)):
for idx, item in enumerate(input_item):
# For nested lists or tuples, add an additional level to the prefix
new_prefix = f"{prefix}[{idx}]"
display_shape(item, new_prefix)
# If the input_item is a tensor, print its shape
elif isinstance(input_item, torch.Tensor):
print(f"{prefix}: {input_item.shape}")
else:
print(f"Unsupported type {type(input_item)} at {prefix}")
def Heaviside(phi, alpha, epsilon):
device = phi.device # Get the device of phi
# For values outside of [-epsilon, epsilon]
H_positive = torch.ones_like(phi, device=device)
H_negative = alpha * torch.ones_like(phi, device=device)
# For values inside [-epsilon, epsilon]
default = 3 * (1 - alpha) / 4 * (phi / epsilon - phi**3 / (3 * epsilon**3)) + (1 + alpha) / 2
# Construct Heavisidve using conditions
H = torch.where(phi > epsilon, H_positive, torch.where(phi < -epsilon, H_negative, default))
return H
def smooth_heaviside(phi, alpha, epsilon):
# Scale and shift phi for the sigmoid function
scaled_phi = (phi - alpha) / epsilon
# Apply the sigmoid function
H = torch.sigmoid(scaled_phi)
return H
def calc_Phi(variable, LSgrid):
device = variable.device # Get the device of the variable
x0 = variable[0]
y0 = variable[1]
L = variable[2]
t = variable[3] # Constant thickness
angle = variable[4]
# Rotation
st = torch.sin(angle)
ct = torch.cos(angle)
x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0)
y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0)
# Regularized hyperellipse equation
a = L / 2 # Semi-major axis
b = t / 2 # Constant semi-minor axis
small_constant = 1e-9 # To avoid division by zero
temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6)
# # Ensuring the hyperellipse shape
allPhi = 1 - (temp + small_constant)**(1/6)
# # Call Heaviside function with allPhi
alpha = torch.tensor(0.0, device=device, dtype=torch.float32)
epsilon = torch.tensor(0.001, device=device, dtype=torch.float32)
H_phi = smooth_heaviside(allPhi, alpha, epsilon)
return allPhi, H_phi
class CustomDiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(CustomDiceLoss, self).__init__()
self.size_average = size_average
def forward(self, inputs, targets, smooth=1):
# If your model contains a sigmoid or equivalent activation layer, comment this line
#inputs = F.sigmoid(inputs)
# Check if the input tensors are of expected shape
if inputs.shape != targets.shape:
raise ValueError("Shape mismatch: inputs and targets must have the same shape")
# Flatten tensors
inputs_flat = inputs.view(inputs.shape[0], -1)
targets_flat = targets.view(targets.shape[0], -1)
# Compute intersections and unions
intersection = (inputs_flat * targets_flat).sum(1)
union = inputs_flat.sum(1) + targets_flat.sum(1)
# Compute Dice
dice = (2. * intersection + smooth) / (union + smooth)
dice_loss = 1 - dice
# If you want the average loss over the batch to be returned
if self.size_average:
return dice_loss.mean()
else:
# If you want individual losses for each sample in the batch
return dice_loss
class CustomTverskyLoss(nn.Module):
def __init__(self, alpha, beta, size_average=True):
super(CustomTverskyLoss, self).__init__()
self.alpha = alpha
self.beta = beta
self.size_average = size_average
def forward(self, inputs, targets, smooth=1):
# If your model contains a sigmoid or equivalent activation layer, uncomment this line
# inputs = F.sigmoid(inputs)
# Check if the input tensors are of expected shape
if inputs.shape != targets.shape:
raise ValueError("Shape mismatch: inputs and targets must have the same shape")
# Flatten tensors
inputs_flat = inputs.view(inputs.shape[0], -1)
targets_flat = targets.view(targets.shape[0], -1)
# Compute true positives, false positives, and false negatives
true_pos = (inputs_flat * targets_flat).sum(1)
false_neg = ((1 - inputs_flat) * targets_flat).sum(1)
false_pos = (inputs_flat * (1 - targets_flat)).sum(1)
# Compute the Tversky index
tversky_index = (true_pos + smooth) / (true_pos + self.alpha * false_neg + self.beta * false_pos + smooth)
tversky_loss = 1 - tversky_index
# If you want the average loss over the batch to be returned
if self.size_average:
return tversky_loss.mean()
else:
# If you want individual losses for each sample in the batch
return tversky_loss
class VarifocalLoss(nn.Module):
"""Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367."""
def __init__(self):
"""Initialize the VarifocalLoss class."""
super().__init__()
@staticmethod
def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
"""Computes varfocal loss."""
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
with torch.cuda.amp.autocast(enabled=False):
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
weight).mean(1).sum()
return loss
class FocalLoss(nn.Module):
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
def __init__(self, ):
super().__init__()
@staticmethod
def forward(pred, label, gamma=1.5, alpha=0.25):
"""Calculates and updates confusion matrix for object detection/classification tasks."""
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = pred.sigmoid() # prob from logits
p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
modulating_factor = (1.0 - p_t) ** gamma
loss *= modulating_factor
if alpha > 0:
alpha_factor = label * alpha + (1 - label) * (1 - alpha)
loss *= alpha_factor
return loss.mean(1).sum()
class BboxLoss(nn.Module):
def __init__(self, reg_max, use_dfl=False):
"""Initialize the BboxLoss module with regularization maximum and DFL settings."""
super().__init__()
self.reg_max = reg_max
self.use_dfl = use_dfl
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
"""IoU loss."""
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
# DFL loss
if self.use_dfl:
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
loss_dfl = loss_dfl.sum() / target_scores_sum
else:
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
return loss_iou, loss_dfl
@staticmethod
def _df_loss(pred_dist, target):
"""Return sum of left and right DFL losses."""
# Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
tl = target.long() # target left
tr = tl + 1 # target right
wl = tr - target # weight left
wr = 1 - wl # weight right
return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)
class KeypointLoss(nn.Module):
"""Criterion class for computing training losses."""
def __init__(self, sigmas) -> None:
super().__init__()
self.sigmas = sigmas
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()
class v8DetectionLoss:
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
device = next(model.parameters()).device # get model device
h = model.args # hyperparameters
m = model.model[-1] # Detect() module
self.bce = nn.BCEWithLogitsLoss(reduction='none')
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.no = m.no
self.reg_max = m.reg_max
self.device = device
self.use_dfl = m.reg_max > 1
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
def preprocess(self, targets, batch_size, scale_tensor):
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
if targets.shape[0] == 0:
out = torch.zeros(batch_size, 0, 5, device=self.device)
else:
i = targets[:, 0] # image index
_, counts = i.unique(return_counts=True)
counts = counts.to(dtype=torch.int32)
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
for j in range(batch_size):
matches = i == j
n = matches.sum()
if n:
out[j, :n] = targets[matches, 1:]
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
return out
def bbox_decode(self, anchor_points, pred_dist):
"""Decode predicted object bounding box coordinates from anchor points and distribution."""
if self.use_dfl:
b, a, c = pred_dist.shape # batch, anchors, channels
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
return dist2bbox(pred_dist, anchor_points, xywh=False)
def __call__(self, preds, batch):
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
loss = torch.zeros(3, device=self.device) # box, cls, dfl
feats = preds[1] if isinstance(preds, tuple) else preds
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
batch_size = pred_scores.shape[0]
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.cls # cls gain
loss[2] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
class v8SegmentationLoss(v8DetectionLoss):
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
super().__init__(model)
self.nm = model.model[-1].nm # number of masks
try:
self.overlap = model.args.overlap_mask
except:
self.overlap =False
self.diceloss = CustomDiceLoss()
#self.bceloss = nn.BCELoss()
#self.tversky_loss= CustomTverskyLoss(alpha=0.7, beta=0.3)
def __call__(self, preds, batch):
"""Calculate and return the loss for the YOLO model."""
loss = torch.zeros(5, device=self.device) # box, cls, dfl
if len(preds) ==3:
feats, pred_masks, proto = preds
elif len(preds) ==4:
feats, pred_masks, proto, regression_tensor = preds
#Let's describe each variables:
#display_shape(preds)
else:
feats, pred_masks, proto, regression_tensor = preds[1]
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
try:
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
except RuntimeError as e:
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e
if 'regression_vars' in batch:
max_objects = 300 # Set the fixed maximum number of objects
padded_vars = [np.pad(item, ((0, max_objects - len(item)), (0, 0)), mode='constant') for item in batch['regression_vars']]
regression_targets = torch.tensor(np.stack(padded_vars)).to(self.device).float()
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, regression_targets)
else:
# regression targets will only contain zeros:
regression_targets = torch.zeros((batch_size, 6, 300), device=self.device).float()
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
test_labels, target_bboxes, target_scores, fg_mask, target_gt_idx, regression_scores = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, gt_regression= None)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
REG_LOSS = 'pixels'
# if 'regression_vars' in batch:
if REG_LOSS == 'direct':
# Assuming fg_mask has shape (b, h*w)
# Expand the dimensions of fg_mask to match regression_tensor
fg_regression_mask = fg_mask.unsqueeze(1).expand(-1, 6, -1) # fg_regression_mask now has shape (BS, 6, 8400)
filtered_predictions = regression_tensor[fg_regression_mask]
#check if there are nans in regression_tensor:
filtered_target = regression_scores[fg_regression_mask.permute(0,2,1).contiguous()]
# Now create masked versions of your regression tensor and regression scores
# Compute MSE loss on masked tensors
regression_loss = F.mse_loss(filtered_predictions, filtered_target,reduction="mean")
if (REG_LOSS == 'pixels' or REG_LOSS=="level") and self.hyp.reg_gain > 0:
# if torch.isnan(regression_tensor).any():
# print("There are nans in regression_tensor")
# sys.exit()
DW = 1.0
DH = 1.0
nelx = int(200 * DW)
nely = int(200 * DH)
x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1))
LSgrid = torch.stack((y.flatten(), x.flatten()), dim=0)
#print(pred_scores.shape,target_scores.shape) torch.Size([8, 8400, 1]) torch.Size([8, 8400, 1])
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
if fg_mask.sum():
# bbox loss
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
target_scores, target_scores_sum, fg_mask)
# masks loss
masks = batch['masks'].to(self.device).float()
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
for i in range(batch_size):
if fg_mask[i].sum():
mask_idx = target_gt_idx[i][fg_mask[i]]
if self.overlap:
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
else:
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg
test_bboxes = pred_bboxes*stride_tensor
test_bboxes = test_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
# clip the test_bboxes between 0 and 1:
test_bboxes = torch.clip(test_bboxes,0,1)
filtered_regression = regression_tensor[i][:,fg_mask[i]]
# Check if CUDA is available
# Create the constant tensors on the specified device
constant_tensor_02 = torch.full((test_bboxes.shape[0],), 0.2, device=self.device)
constant_tensor_00 = torch.full((test_bboxes.shape[0],), 0.001, device=self.device)
# Stack the tensors and move them to the specified device
xmax = torch.stack([test_bboxes[:,2], test_bboxes[:,3], test_bboxes[:,2], test_bboxes[:,3], constant_tensor_02], dim=1).to(self.device)
xmin = torch.stack([test_bboxes[:,0], test_bboxes[:,1], test_bboxes[:,0], test_bboxes[:,1], constant_tensor_00], dim=1).to(self.device)
unnormalized_preds = filtered_regression.T * (xmax - xmin) + xmin
# # # The design variables are infered from the two endpoints and the two thicknesses:
x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2
y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2
L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 +
(unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2)
L = L+1e-4
t_1 = unnormalized_preds[:, 4]
epsilon = 1e-10
y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon
x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon
theta = torch.atan2(y_diff, x_diff)
formatted_variables = torch.cat((x_center.unsqueeze(1),
y_center.unsqueeze(1),
L.unsqueeze(1),
t_1.unsqueeze(1),
theta.unsqueeze(1)), dim=1)
pxyxy = test_bboxes * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
if (REG_LOSS == "pixels" or REG_LOSS=="level") and self.hyp.reg_gain > 0:
# filtered_predictions = formatted_variables[i][:,fg_mask[i]]
filtered_predictions = formatted_variables
pred_phi , H_phi = calc_Phi(filtered_predictions.T,LSgrid.to('cuda'))
if REG_LOSS == "level":
pred_phi= torch.reshape(pred_phi,(nely+1,nelx+1,H_phi.shape[-1]))
normalized = (pred_phi - pred_phi.min()) / (pred_phi.max() - pred_phi.min())
cropped_gt_mask = crop_mask(gt_mask,pxyxy)
normalized = normalized.permute(2, 0, 1).unsqueeze(1) # Now the shape is ([80, 1, 51, 51])
normalized = F.interpolate(normalized, size=cropped_gt_mask.shape[-2:], mode='nearest')
level_loss = F.mse_loss(normalized.squeeze(1), cropped_gt_mask, reduction="mean")
loss[4]+=level_loss
else:
H_phi= torch.reshape(H_phi,(nely+1,nelx+1,H_phi.shape[-1]))
# Rearrange H_phi to the shape ([batch_size, channels, height, width])
H_phi = H_phi.permute(2, 0, 1).unsqueeze(1) # Now the shape is ([80, 1, 51, 51])
cropped_gt_mask = crop_mask(gt_mask,pxyxy)
# Use interpolate to resize
H_phi_resized = F.interpolate(H_phi, size=cropped_gt_mask.shape[-2:], mode='nearest')
# Rearrange H_phi_resized back to the shape ([height, width, batch_size])
H_phi_resized = H_phi_resized.squeeze(1) # Now the shape is ([80, 160, 160])
#Threhsold the H_phi_resized
#H_phi_resized = torch.where(H_phi_resized > 0.5, 1.0, 0.0)
dice = self.diceloss(H_phi_resized, cropped_gt_mask)
#tversky = self.tversky_loss(H_phi_resized, cropped_gt_mask)
#mse = F.mse_loss(H_phi_resized, cropped_gt_mask, reduction="mean")
loss[4]+= dice
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
loss[4] += 0.0
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
loss[4] += 0.0
if REG_LOSS =='direct':
loss[4] = regression_loss
else:
loss[4] *= self.hyp.reg_gain / batch_size
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.box / batch_size # seg gain
loss[2] *= self.hyp.cls # cls gain
loss[3] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
"""Mask loss for one image."""
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
def single_reg_loss(self, gt_mask, pred, xyxy, area):
"""Mask loss for one image."""
loss = F.binary_cross_entropy_with_logits(pred, gt_mask, reduction='none')
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
class v8PoseLoss(v8DetectionLoss):
"""Criterion class for computing training losses."""
def __init__(self, model): # model must be de-paralleled
super().__init__(model)
self.kpt_shape = model.model[-1].kpt_shape
self.bce_pose = nn.BCEWithLogitsLoss()
is_pose = self.kpt_shape == [17, 3]
nkpt = self.kpt_shape[0] # number of keypoints
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
self.keypoint_loss = KeypointLoss(sigmas=sigmas)
def __call__(self, preds, batch):
"""Calculate the total loss and detach it."""
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
batch_size = pred_scores.shape[0]
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
keypoints = batch['keypoints'].to(self.device).float().clone()
keypoints[..., 0] *= imgsz[1]
keypoints[..., 1] *= imgsz[0]
for i in range(batch_size):
if fg_mask[i].sum():
idx = target_gt_idx[i][fg_mask[i]]
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51)
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
pred_kpt = pred_kpts[i][fg_mask[i]]
kpt_mask = gt_kpt[..., 2] != 0
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
# kpt_score loss
if pred_kpt.shape[-1] == 3:
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.pose / batch_size # pose gain
loss[2] *= self.hyp.kobj / batch_size # kobj gain
loss[3] *= self.hyp.cls # cls gain
loss[4] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
@staticmethod
def kpts_decode(anchor_points, pred_kpts):
"""Decodes predicted keypoints to image coordinates."""
y = pred_kpts.clone()
y[..., :2] *= 2.0
y[..., 0] += anchor_points[:, [0]] - 0.5
y[..., 1] += anchor_points[:, [1]] - 0.5
return y
class v8ClassificationLoss:
"""Criterion class for computing training losses."""
def __call__(self, preds, batch):
"""Compute the classification loss between predictions and true labels."""
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
loss_items = loss.detach()
return loss, loss_items