|
|
|
""" |
|
Transformer modules |
|
""" |
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.init import constant_, xavier_uniform_ |
|
|
|
from .conv import Conv |
|
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch |
|
|
|
__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI', |
|
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP') |
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
"""Transformer Encoder.""" |
|
|
|
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False): |
|
super().__init__() |
|
from ...utils.torch_utils import TORCH_1_9 |
|
if not TORCH_1_9: |
|
raise ModuleNotFoundError( |
|
'TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True).') |
|
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True) |
|
|
|
self.fc1 = nn.Linear(c1, cm) |
|
self.fc2 = nn.Linear(cm, c1) |
|
|
|
self.norm1 = nn.LayerNorm(c1) |
|
self.norm2 = nn.LayerNorm(c1) |
|
self.dropout = nn.Dropout(dropout) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
self.act = act |
|
self.normalize_before = normalize_before |
|
|
|
def with_pos_embed(self, tensor, pos=None): |
|
"""Add position embeddings if given.""" |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None): |
|
q = k = self.with_pos_embed(src, pos) |
|
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] |
|
src = src + self.dropout1(src2) |
|
src = self.norm1(src) |
|
src2 = self.fc2(self.dropout(self.act(self.fc1(src)))) |
|
src = src + self.dropout2(src2) |
|
return self.norm2(src) |
|
|
|
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None): |
|
src2 = self.norm1(src) |
|
q = k = self.with_pos_embed(src2, pos) |
|
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] |
|
src = src + self.dropout1(src2) |
|
src2 = self.norm2(src) |
|
src2 = self.fc2(self.dropout(self.act(self.fc1(src2)))) |
|
return src + self.dropout2(src2) |
|
|
|
def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None): |
|
"""Forward propagates the input through the encoder module.""" |
|
if self.normalize_before: |
|
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) |
|
return self.forward_post(src, src_mask, src_key_padding_mask, pos) |
|
|
|
|
|
class AIFI(TransformerEncoderLayer): |
|
|
|
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False): |
|
super().__init__(c1, cm, num_heads, dropout, act, normalize_before) |
|
|
|
def forward(self, x): |
|
c, h, w = x.shape[1:] |
|
pos_embed = self.build_2d_sincos_position_embedding(w, h, c) |
|
|
|
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype)) |
|
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous() |
|
|
|
@staticmethod |
|
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.): |
|
grid_w = torch.arange(int(w), dtype=torch.float32) |
|
grid_h = torch.arange(int(h), dtype=torch.float32) |
|
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij') |
|
assert embed_dim % 4 == 0, \ |
|
'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' |
|
pos_dim = embed_dim // 4 |
|
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim |
|
omega = 1. / (temperature ** omega) |
|
|
|
out_w = grid_w.flatten()[..., None] @ omega[None] |
|
out_h = grid_h.flatten()[..., None] @ omega[None] |
|
|
|
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None] |
|
|
|
|
|
class TransformerLayer(nn.Module): |
|
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance).""" |
|
|
|
def __init__(self, c, num_heads): |
|
"""Initializes a self-attention mechanism using linear transformations and multi-head attention.""" |
|
super().__init__() |
|
self.q = nn.Linear(c, c, bias=False) |
|
self.k = nn.Linear(c, c, bias=False) |
|
self.v = nn.Linear(c, c, bias=False) |
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) |
|
self.fc1 = nn.Linear(c, c, bias=False) |
|
self.fc2 = nn.Linear(c, c, bias=False) |
|
|
|
def forward(self, x): |
|
"""Apply a transformer block to the input x and return the output.""" |
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x |
|
return self.fc2(self.fc1(x)) + x |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
"""Vision Transformer https://arxiv.org/abs/2010.11929.""" |
|
|
|
def __init__(self, c1, c2, num_heads, num_layers): |
|
"""Initialize a Transformer module with position embedding and specified number of heads and layers.""" |
|
super().__init__() |
|
self.conv = None |
|
if c1 != c2: |
|
self.conv = Conv(c1, c2) |
|
self.linear = nn.Linear(c2, c2) |
|
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) |
|
self.c2 = c2 |
|
|
|
def forward(self, x): |
|
"""Forward propagates the input through the bottleneck module.""" |
|
if self.conv is not None: |
|
x = self.conv(x) |
|
b, _, w, h = x.shape |
|
p = x.flatten(2).permute(2, 0, 1) |
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) |
|
|
|
|
|
class MLPBlock(nn.Module): |
|
|
|
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU): |
|
super().__init__() |
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim) |
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim) |
|
self.act = act() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.lin2(self.act(self.lin1(x))) |
|
|
|
|
|
class MLP(nn.Module): |
|
""" Very simple multi-layer perceptron (also called FFN)""" |
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
return x |
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
""" |
|
LayerNorm2d module from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py |
|
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 |
|
""" |
|
|
|
def __init__(self, num_channels, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
self.bias = nn.Parameter(torch.zeros(num_channels)) |
|
self.eps = eps |
|
|
|
def forward(self, x): |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
return self.weight[:, None, None] * x + self.bias[:, None, None] |
|
|
|
|
|
class MSDeformAttn(nn.Module): |
|
""" |
|
Original Multi-Scale Deformable Attention Module. |
|
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py |
|
""" |
|
|
|
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): |
|
super().__init__() |
|
if d_model % n_heads != 0: |
|
raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}') |
|
_d_per_head = d_model // n_heads |
|
|
|
assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`' |
|
|
|
self.im2col_step = 64 |
|
|
|
self.d_model = d_model |
|
self.n_levels = n_levels |
|
self.n_heads = n_heads |
|
self.n_points = n_points |
|
|
|
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) |
|
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) |
|
self.value_proj = nn.Linear(d_model, d_model) |
|
self.output_proj = nn.Linear(d_model, d_model) |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
constant_(self.sampling_offsets.weight.data, 0.) |
|
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) |
|
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) |
|
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat( |
|
1, self.n_levels, self.n_points, 1) |
|
for i in range(self.n_points): |
|
grid_init[:, :, i, :] *= i + 1 |
|
with torch.no_grad(): |
|
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) |
|
constant_(self.attention_weights.weight.data, 0.) |
|
constant_(self.attention_weights.bias.data, 0.) |
|
xavier_uniform_(self.value_proj.weight.data) |
|
constant_(self.value_proj.bias.data, 0.) |
|
xavier_uniform_(self.output_proj.weight.data) |
|
constant_(self.output_proj.bias.data, 0.) |
|
|
|
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None): |
|
""" |
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py |
|
Args: |
|
query (torch.Tensor): [bs, query_length, C] |
|
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0), |
|
bottom-right (1, 1), including padding area |
|
value (torch.Tensor): [bs, value_length, C] |
|
value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] |
|
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements |
|
|
|
Returns: |
|
output (Tensor): [bs, Length_{query}, C] |
|
""" |
|
bs, len_q = query.shape[:2] |
|
len_v = value.shape[1] |
|
assert sum(s[0] * s[1] for s in value_shapes) == len_v |
|
|
|
value = self.value_proj(value) |
|
if value_mask is not None: |
|
value = value.masked_fill(value_mask[..., None], float(0)) |
|
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads) |
|
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2) |
|
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points) |
|
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points) |
|
|
|
num_points = refer_bbox.shape[-1] |
|
if num_points == 2: |
|
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1) |
|
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :] |
|
sampling_locations = refer_bbox[:, :, None, :, None, :] + add |
|
elif num_points == 4: |
|
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5 |
|
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add |
|
else: |
|
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.') |
|
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights) |
|
return self.output_proj(output) |
|
|
|
|
|
class DeformableTransformerDecoderLayer(nn.Module): |
|
""" |
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py |
|
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py |
|
""" |
|
|
|
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4): |
|
super().__init__() |
|
|
|
|
|
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, d_ffn) |
|
self.act = act |
|
self.dropout3 = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(d_ffn, d_model) |
|
self.dropout4 = nn.Dropout(dropout) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
|
|
@staticmethod |
|
def with_pos_embed(tensor, pos): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_ffn(self, tgt): |
|
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt)))) |
|
tgt = tgt + self.dropout4(tgt2) |
|
return self.norm3(tgt) |
|
|
|
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None): |
|
|
|
q = k = self.with_pos_embed(embed, query_pos) |
|
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), |
|
attn_mask=attn_mask)[0].transpose(0, 1) |
|
embed = embed + self.dropout1(tgt) |
|
embed = self.norm1(embed) |
|
|
|
|
|
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, |
|
padding_mask) |
|
embed = embed + self.dropout2(tgt) |
|
embed = self.norm2(embed) |
|
|
|
|
|
return self.forward_ffn(embed) |
|
|
|
|
|
class DeformableTransformerDecoder(nn.Module): |
|
""" |
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py |
|
""" |
|
|
|
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1): |
|
super().__init__() |
|
self.layers = _get_clones(decoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.hidden_dim = hidden_dim |
|
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx |
|
|
|
def forward( |
|
self, |
|
embed, |
|
refer_bbox, |
|
feats, |
|
shapes, |
|
bbox_head, |
|
score_head, |
|
pos_mlp, |
|
attn_mask=None, |
|
padding_mask=None): |
|
output = embed |
|
dec_bboxes = [] |
|
dec_cls = [] |
|
last_refined_bbox = None |
|
refer_bbox = refer_bbox.sigmoid() |
|
for i, layer in enumerate(self.layers): |
|
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox)) |
|
|
|
bbox = bbox_head[i](output) |
|
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox)) |
|
|
|
if self.training: |
|
dec_cls.append(score_head[i](output)) |
|
if i == 0: |
|
dec_bboxes.append(refined_bbox) |
|
else: |
|
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox))) |
|
elif i == self.eval_idx: |
|
dec_cls.append(score_head[i](output)) |
|
dec_bboxes.append(refined_bbox) |
|
break |
|
|
|
last_refined_bbox = refined_bbox |
|
refer_bbox = refined_bbox.detach() if self.training else refined_bbox |
|
|
|
return torch.stack(dec_bboxes), torch.stack(dec_cls) |
|
|